首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9599篇
  免费   779篇
  国内免费   496篇
电工技术   1176篇
综合类   579篇
化学工业   2821篇
金属工艺   1362篇
机械仪表   364篇
建筑科学   102篇
矿业工程   140篇
能源动力   1063篇
轻工业   304篇
水利工程   29篇
石油天然气   110篇
武器工业   45篇
无线电   684篇
一般工业技术   1075篇
冶金工业   477篇
原子能技术   97篇
自动化技术   446篇
  2024年   18篇
  2023年   133篇
  2022年   185篇
  2021年   251篇
  2020年   279篇
  2019年   276篇
  2018年   205篇
  2017年   318篇
  2016年   280篇
  2015年   285篇
  2014年   468篇
  2013年   501篇
  2012年   523篇
  2011年   834篇
  2010年   605篇
  2009年   652篇
  2008年   583篇
  2007年   710篇
  2006年   614篇
  2005年   464篇
  2004年   429篇
  2003年   352篇
  2002年   329篇
  2001年   285篇
  2000年   232篇
  1999年   185篇
  1998年   183篇
  1997年   127篇
  1996年   100篇
  1995年   97篇
  1994年   103篇
  1993年   62篇
  1992年   46篇
  1991年   37篇
  1990年   30篇
  1989年   19篇
  1988年   17篇
  1987年   9篇
  1986年   8篇
  1985年   15篇
  1984年   10篇
  1983年   7篇
  1981年   3篇
  1980年   1篇
  1964年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
2.
Catalyst slurries (inks) were prepared with and without thermal treatment to determine the support/ionomer structures and interactions in the catalyst layer (CL) which impact on membrane electrode performance and durability. The thermal treatment of the ink has a nominal effect on the ionomer/support structure in which the carbon support is non-graphitised. The agglomerate/aggregate structures have a high degree of support/ionomer interface and sufficient macroporosity for water movement in the CL. This improves the membrane electrode assembly (MEA) performance, but also accelerates electrochemical carbon degradation. Thermal treatment of graphitised support-containing inks resulted in increased performance facilitated by a larger support/ionomer interface. Without thermal treatment, the more hydrophobic support would form aggregate structures in which water contact was restricted, limiting proton transfer, isolating catalyst, decreasing performance. The water limited access, would however, prolong stability during accelerates carbon degradation. The electrochemical properties were studied using full and half MEA cells.  相似文献   
3.
《Ceramics International》2021,47(24):34845-34850
The interfacial delamination of electrode/ceramic multilayer structure will seriously damage the reliability of low temperature co-fired ceramic (LTCC) module in practical applications. In this work, three kinds of glasses employed in Au electrode are designed and prepared to study the abnormal expansion and delamination process in the Au/ceramic LTCC multilayer structure. The interfacial delamination in the co-fired structure is found to be attributed to the abnormal expansion of glass in respect to Au electrode at high temperature, which is originated from the enlarged closed pores during the co-firing process. This conclusion is further confirmed by co-firing the sample in a low-pressure condition. The mechanism and elimination of interfacial delamination here provides a feasible solution for the design of novel glasses in Au electrode for LTCC applications.  相似文献   
4.
《Ceramics International》2022,48(3):3536-3543
We investigated the optical and electrical properties of Ta2O5/Ag/Ta2O5 films as functions of the thicknesses of the Ta2O5 and Ag layers. It was found that with an increase in the thicknesses of the Ta2O5 and Ag layers from 10 to 40 nm and from 12 to 24 nm, respectively, the sheet resistance, carrier concentration, electron mobility, and resistivity of the Ta2O5/Ag/Ta2O5 film varied from 2.02 to 8.95 Ω/sq, 5.74 × 1021 to 2.92 × 1022 cm–3, from 13.21 to 24.07 cm2/V·s, and from 8.89 × 10-6 to 8.24 × 10-5 Ω cm, respectively. The average transmittance (Tav) of the multilayer samples ranged from 57.18% to 93.99%, and it depended on the Ta2O5 and Ag layer thicknesses. The highest Tav of 93.99% was observed for the film with 35 nm thick Ta2O5 and 18 nm thick Ag layers, and the peak Haacke's figure of merit (157.04 × 10–3 Ω–1) was obtained for 20 nm thick Ta2O5 and 21 nm thick Ag layers. Ta2O5 (100 nm) and Ta2O5/Ag/Ta2O5 (20 nm/21 nm/20 nm) samples had optical bandgaps of 4.70 and 4.45 eV, respectively. Film Wizard simulations were conducted to understand the dependence of the transmittance of the multilayer on the thicknesses of the Ta2O5 and Ag layers, and phasor analyses were performed to determine how the transmittance of the Ta2O5/Ag/Ta2O5 (20 nm/21 nm/20 nm) film depended on the Ta2O5 layer's thickness.  相似文献   
5.
通过对电阻层析成像数据采集原理和深度学习网络的研究,提出了一种基于阵列电阻值和多层感知器深度学习网络相结合的流型识别方法。利用电阻层析成像系统中的16个电极传感器来获取流型样本数据,并构建出流型识别数据库,然后对多层感知器深度学习网络进行训练,获得可以识别不同流型的网络。实验结果表明,采用阵列电阻值结合多层感知器网络对流型进行学习和识别的方法,流型识别准确率可以达到95%,解决了流型图像生成过程与数据特征预选过程中流型特征损失的问题,流型识别性能得到了提高。  相似文献   
6.
7.
We have been studying on estimating distribution of permittivity between measurement electrodes using capacitance and electric potential. Two arc electrodes were separated by long distance and there electrodes were surrounded by additional electrodes respectively. In past research work, we carried out numerical electric analysis for calculating the capacitance and electric potential using Finite Element Method (FEM) and compared with experimental and numerical results. The capacitance values were almost agreed with experimental and numerical results. However, the electric potential values were different between experimental and numerical results in conventional studies. In this paper, we proposed an equivalent circuit including the stray capacity and measurement method for capacitance, the electric potential in space between long distance electrodes was estimated.  相似文献   
8.
9.
In continuation to my previous work (Guha S. AIChE J. 2013;59(4):1390-1399), in this work, effects of ionic migration are evaluated for disk region of a rotating ring disk electrode system by numerically solving complex differential equations, developed for mass transfer along with kinetic complication in presence of ionic migration under limiting current condition. The system for simulation is 0.01 M Fe2(SO4)3 solution with H2SO4 as supporting electrolyte. Simulation cases are presence and absence of ionic migration with kinetic complication (oxidation of Fe2+ to Fe3+ under O2 pressure). Results show that concentration boundary layer thickness of reactant Fe3+ reduces appreciably and steady-state disk current reduces substantially in presence of migration. Simulated steady-state disk current in absence of migration case agrees well with published data. Results indicate higher Fe2+ concentration in presence of migration and thereby higher rate of oxidation of Fe2+ to Fe3+ at all rate constant values.  相似文献   
10.
W-doped La0·5Sr0·5Fe0·9W0·1O3-δ (LSFW) was prepared and evaluated as a symmetric electrode for solid oxide fuel cells (SSOFCs). Phase and structural stability of LSFW under both reducing and oxidizing atmospheres was studied. The oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) mechanisms were investigated by using electrochemical impedance spectra (EIS) and distribution of relaxation times (DRT). Electrode polarization resistance (Rp) of LSFW are 0.08 and 0.16 Ω cm2 in air and wet hydrogen at 800 °C, respectively. DRT results indicate that the rate-limiting step of LSFW at 800 °C in cathodic conditions and anodic conditions are related to oxygen diffusion and hydrogen adsorption/diffusion, respectively. A La0·8Sr0.2Ga0.8Mg0·2O3-δ (LSGM) electrolyte-supported single cell using LSFW electrodes shows a maximum power density of 617.3 mW cm−2 at 800 °C with considerable stability and reversibility, which enables LSFW a promising SOFCs symmetric electrode material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号