首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30937篇
  免费   3510篇
  国内免费   2656篇
电工技术   592篇
综合类   3910篇
化学工业   2212篇
金属工艺   4694篇
机械仪表   2106篇
建筑科学   9108篇
矿业工程   1966篇
能源动力   597篇
轻工业   531篇
水利工程   2490篇
石油天然气   1046篇
武器工业   264篇
无线电   601篇
一般工业技术   4323篇
冶金工业   1725篇
原子能技术   117篇
自动化技术   821篇
  2024年   55篇
  2023年   473篇
  2022年   857篇
  2021年   1104篇
  2020年   1154篇
  2019年   950篇
  2018年   957篇
  2017年   1121篇
  2016年   1150篇
  2015年   1234篇
  2014年   1912篇
  2013年   2012篇
  2012年   2343篇
  2011年   2568篇
  2010年   1786篇
  2009年   1855篇
  2008年   1751篇
  2007年   2051篇
  2006年   1929篇
  2005年   1495篇
  2004年   1245篇
  2003年   1108篇
  2002年   957篇
  2001年   824篇
  2000年   750篇
  1999年   668篇
  1998年   494篇
  1997年   425篇
  1996年   320篇
  1995年   307篇
  1994年   263篇
  1993年   180篇
  1992年   184篇
  1991年   126篇
  1990年   117篇
  1989年   109篇
  1988年   70篇
  1987年   45篇
  1986年   24篇
  1985年   25篇
  1984年   15篇
  1983年   16篇
  1982年   18篇
  1981年   4篇
  1980年   19篇
  1979年   26篇
  1975年   1篇
  1959年   5篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
1.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   
2.
《Ceramics International》2021,47(19):27351-27360
A series of xPbO–(45-x)CuO–55B2O3 glasses (5 ≤ x ≥ 40 mol %) were prepared by the melt-quenching technique. The X-ray diffraction (XRD) patterns of the prepared glasses are found to have amorphous structure. An extensive ultrasonic study has been made to explore the structural role of PbO and CuO in the borate network. Various elastic properties were calculated from the measured data of density and ultrasonic velocity. Ultrasonic velocity and elastic moduli revealed broad humps at about 20 mol % PbO, which are attributed to the borate anomaly. Below 20 mol % PbO, all Pb2+ ions are considered to be entering the borate network as a glass modifier. This results in the transforms the borate network from an open structure to a denser three-dimensional structure due to BO3 → BO4 conversion. Beyond 20 mol, addition of PbO results in the formation of metaborate, pyroborate, and orthoborate units with NBOs. This weakness the glass structure and decrease both ultrasonic velocity and elastic moduli. The elastic properties were predicted and quantitatively analyzed by taking into account the effect of boron coordination number on the compositional and structural parameters involved in Makishima–Mackenzie's theory, ring deformation model and bond compression model. An excellent agreement between the computed theoretical and experimental elastic moduli, micro-harness and Poisson's ratio was achieved for majority of samples.  相似文献   
3.
In this study the effects of high temperature and moisture on the impact damage resistance and mechanical strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates were exposed to either a 1050°C isothermal furnace-based environment for 30 consecutive days at 6 h a day, or 95% relative humidity environment for 13 consecutive days at 67°C. Low velocity impact, tensile and short beam strength tests were performed on both ambient and environmentally conditioned laminates and damage was characterized using a combination of non-destructive and destructive techniques. High temperature and humidity environmental exposure adversely affected the impact resistance of the composite laminates. For all the environments, planar internal damage area was greater than the back side dent area, which in turn was greater than the impactor side dent area. Evidence of environmental embrittlement through a stiffer tensile response was noted for the high temperature exposed laminates while the short beam strength tests showed greater propensity for interlaminar shear failure in the moisture exposed laminates. Destructive evaluations exposed larger, more pronounced delaminations in the environmentally conditioned laminates in comparison to the ambient ones. External damage metrics of the impactor side dent depth and area directly influenced the post-impact tensile strength of the laminates while no such trend between internal damage area and residual strength could be ascertained.  相似文献   
4.
Face aging (FA) for young faces refers to rendering the aging faces at target age for an individual, generally under 20s, which is an important topic of facial age analysis. Unlike traditional FA for adults, it is challenging to age children with one deep learning-based FA network, since there are deformations of facial shapes and variations of textural details. To alleviate the deficiency, a unified FA framework for young faces is proposed, which consists of two decoupled networks to apply aging image translation. It explicitly models transformations of geometry and appearance using two components: GD-GAN, which simulates the Geometric Deformation using Generative Adversarial Network; TV-GAN, which simulates the Textural Variations guided by the age-related saliency map. Extensive experiments demonstrate that our method has advantages over the state-of-the-art methods in terms of synthesizing visually plausible images for young faces, as well as preserving the personalized features.  相似文献   
5.
The evolution of strain hardening behavior of the Fe_(50)(CoCrMnNi)_(50) medium-entropy alloy as a function of the fraction of recrystallized microstructure and the grain size was studied using the Hollomon and Ludwigson equations.The specimens under study were partially recrystallized,fully recrystallized with ultrafine-grained microstructure,and fully recrystallized with coarse grains.The yield strength decreases steadily as the fraction of recry stallized micro structure and grain size increases due to the recovery process and the Hall-Petch effect.Interestingly,the bimodal grain distribution was found to have a significant impact on strain hardening during plastic deformation.For instance,the highest ultimate tensile strength was exhibited by a 0.97 μm specimen,which was observed to contain a bimodal grain distribution.Furthermore,using the Ludwigson equation,the effect of the bimodal grain distribution was established from the behavior of K_2 and n1 curves.These curves tend to show very high values in the specimens with a bimodal grain distribution compared to those that show a homogenous grain distribution.Additionally,the bimodal grain distribution contributes to the extensive L(u|")ders strain observed in the 0.97 μm specimen,which induces a significant deviation of the Hollomon equation at lower strains.  相似文献   
6.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
7.
为获得设计需要的巨型水轮发电机剪断销的剪切力,得到剪切力波动受控的批量剪断销,通过拉伸试验、冲击试验、硬度试验和剪断销剪切试验等讨论了全尺寸剪断销剪切试验的可行性,分析了剪切试验时正常剪断和非正常剪断的剪断销材料性能差异,探究了剪断销的剪切力质量稳定性控制方法。结果表明:控制剪断销料坯的布氏硬度波动,可实现间接控制剪断销剪切强度的波动;通过试验总结的六步法可达到控制批量剪断销质量和剪切力波动的目的。  相似文献   
8.
以禹州市梁北矿为研究区,利用2018年11月—2020年6月间35景5 m×20 m分辨率Sentinel-1A数据,采用InSAR技术,利用SBAS(短基线集InSAR)雷达干涉测量方法对梁北矿进行地面沉降信息提取解译,并通过实地调查成果认为,采用InSAR技术适合在矿区开展地表变形监测。  相似文献   
9.
This study investigates the effect of intermediate stress ratio (b) on the mechanical behaviour of granular soil in true triaxial tests. A CFD-DEM solver with the ability to model compressible fluid and moving mesh has been developed and calibrated based on existing experimental test results on Nevada sand. The effect of b on the undrained true triaxial test, which has been neglected in the literature, was investigated using a reasonable number of models. The effects of the initial confining stress and initial void ratio also have been studied. The developed model was used to calculate the hydrodynamic forces on the particles and evaluate the ratio of the particle–fluid interaction force to the resultant force on the particles. It has been demonstrated that, in numerical studies, the effect of these forces cannot be neglected.  相似文献   
10.
Referring to the total surface existing in wheat dough, gluten–starch interfaces are a major component. However, their impact on dough rheology is largely unclear. Common viewpoints, based on starch surface modifications or reconstitution experiments, failed to show unambiguous relations of interface characteristics and dough rheology. Observing hybrid artificial dough systems with defined particle surface functionalization gives a new perspective. Since surface functionalization standardizes particle–polymer interfaces, the impact on rheology becomes clearly transferable and thus, contributes to a better understanding of gluten–starch interfaces. Based on this perspective, the effect of particle/starch surface functionality is discussed in relation to the rheological properties of natural wheat dough and modified gluten–starch systems. A competitive relation of starch and gluten for intermolecular interactions with the network-forming polymer becomes apparent during network development by adsorption phenomena. This gluten–starch adhesiveness delays the beginning of non-linearity under large deformations, thus contributing to a high deformability of dough. Consequently, starch surface functionality affects the mechanical properties, starting from network formation and ending with the thermal fixation of structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号