首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4260篇
  免费   710篇
  国内免费   90篇
电工技术   97篇
综合类   175篇
化学工业   1264篇
金属工艺   569篇
机械仪表   73篇
建筑科学   66篇
矿业工程   259篇
能源动力   36篇
轻工业   423篇
水利工程   8篇
石油天然气   97篇
武器工业   15篇
无线电   360篇
一般工业技术   845篇
冶金工业   703篇
原子能技术   42篇
自动化技术   28篇
  2024年   9篇
  2023年   82篇
  2022年   99篇
  2021年   156篇
  2020年   166篇
  2019年   196篇
  2018年   159篇
  2017年   215篇
  2016年   229篇
  2015年   216篇
  2014年   247篇
  2013年   326篇
  2012年   305篇
  2011年   267篇
  2010年   216篇
  2009年   225篇
  2008年   168篇
  2007年   212篇
  2006年   205篇
  2005年   194篇
  2004年   162篇
  2003年   146篇
  2002年   125篇
  2001年   111篇
  2000年   106篇
  1999年   79篇
  1998年   72篇
  1997年   52篇
  1996年   42篇
  1995年   43篇
  1994年   44篇
  1993年   39篇
  1992年   38篇
  1991年   27篇
  1990年   17篇
  1989年   20篇
  1988年   9篇
  1987年   12篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1982年   3篇
  1981年   6篇
  1980年   1篇
  1974年   1篇
排序方式: 共有5060条查询结果,搜索用时 17 毫秒
1.
2.
Chitosan–silver nanocomposites (CS-HDA-AgNCs) was prepared using chitosan, biogenic silver nanocomposites, and crosslinker, hexamethylene 1,6-di(amino carboxysulfonate) (HDA). The film is flexible and transparent. Its physical, mechanical, thermal, hydrophilicity, and swelling properties were improved by HDA (2.5%). The antimicrobial activity of CS-HDA-AgNCs were not displayed any remarkable zone of inhibition but showed toxic effect in the presence of normal 3T3 fibroblasts and cancer HeLa cells. It decreases to ca. 5–7% for both cell lines. In conclusion, it can be mentioned that the CS-HDA-AgNCs, a kind of new functional biomaterial, could be useful for health-care applications.  相似文献   
3.
4.
In this work, silver nanoparticle functionalized polyamide 6 (PA6) fibers were prepared using the electroless plating method. The surface of PA6 fibers was modified by exploiting dopamine/CuSO4/H2O2 system prior to electroless plating to enhance the bonding force between the fiber and the silver nanoparticles. It was found that both the formation rate and the chemical stability of polydopamine (PDA) coatings on the PA6 fiber surface were improved by the introduction of CuSO4/H2O2. The results confirmed the successful deposition of silver nanoparticles on PA6 fiber surface and the average particle diameter of 223 nm. Compared with uncoated fibers, the silver plated PA6 fibers exhibited excellent antimicrobial activity to both Escherichia coli and Staphylococcus aureus (with an antimicrobial efficiency of 99.9% and 100%, respectively). The electrical resistance of the silver coated PA6 fibers reached 0.98 Ω over a length of 1 cm, indicating a good electrical conductivity. In particular, coating durability of the formed silver layer was investigated by subjecting the fibers to various mechanical deformations, and the results showed that the formed silver layer was maintained well after 50 times of cyclic stretching at a constant displacement of 10 mm. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47584.  相似文献   
5.
6.
To fabricate new smart materials that can deliver both the pharmaceutically active molecules and metal nanoparticles, we have formulated chitosan-based semi-IPN hydrogels and their silver nanocomposites (Ag NCs) along with amoxicillin (AMX). Semi-IPN hydrogels and their Ag NCs were synthesized from chitosan, dimethylamino ethyl methacrylate and 2-hydroxyethyl methacrylate via simple-free radical polymerization method and reducing with NaBH4. The resultant formulations were evaluated for in vitro release of AMX, anti-bacterial studies and DNA cleavage studies. The hydrogels with AMX-derived silver nanoparticles (Ag NPs) show better ability to cleave DNA and anti-microbial activity than individual AMX and Ag NPs.  相似文献   
7.
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL−1. Headspace solid phase microextraction associated to gas chromatography–mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.  相似文献   
8.
The photocatalytic deactivation of volatile organic compounds and mold fungi using TiO2 modified with mono‐ and bimetallic (Pt, Cu, Ag) particles is reported in this study. The mono‐ and bimetal‐modified (Pt, Cu, Ag) titanium(IV) oxide photocatalysts were prepared by chemical reduction method and characterized using XRD, XPS, DR/UV‐Vis, BET, and TEM analysis. The effect of incident light, type and content of mono‐ and bimetallic nanoparticles deposited on titanium(IV) oxide was studied. Photocatalytic activity of as‐prepared nanocomposites was examined in the gas phase using LEDs array. High photocatalytic activity of Ag/Pt‐TiO2 and Cu/Pt‐TiO2 in the reaction of toluene degradation resulted from improved efficiency of interfacial charge transfer process, which was consistent with the fluorescence quenching effect revealed by photoluminescence (PL) emission spectra. The photocatalytic deactivation of Penicillium chrysogenum, a pathogenic fungi present in the indoor environment, especially in a damp or water‐damaged building using mono‐ and bimetal‐modified (Pt, Cu, Ag) titanium(IV) oxide was evaluated for the first time. TiO2 modified with mono‐ and bimetallic NPs of Ag/Pt, Cu, and Ag deposited on TiO2 exhibited improved fungicidal activity under LEDs illumination than pure TiO2.  相似文献   
9.
王恒  石慧  徐师  庄梅  邢帆  姜郁 《冶金分析》2019,39(4):60-64
银精矿中水溶性氟会随雨水的冲刷进入生物圈,直接对土壤、水体、大气、人类健康产生危害。实验提出超声提取-离子色谱法测定银精矿中水溶性氟,为银精矿中水溶性氟的检测及后续环境影响评估提供重要的技术支撑。称取0.2g样品(过150目筛),加入30mL水,在40℃时超声提取20min后,使用阴离子交换柱进行分离,使用碳酸钠-碳酸氢钠混合溶液作为淋洗液进行淋洗,洗脱时间为25min,通过电导检测器进行F-检测。F-质量浓度在0.5~10mg/L范围内与对应的峰面积呈线性关系,校准曲线线性相关系数为0.9998;方法检出限为0.062mg/L,测定下限为0.21mg/L。按照实验方法测定两个银精矿中水溶性氟,测定结果的相对标准偏差(RSD,n=6)为3.8%和4.3%;加标回收率为92%~102%。  相似文献   
10.
Silver nanoparticles (AgNP) suspensions were biosynthesized by silver ions reduction in the presence of collagen, a nontoxic, organic polymer, intending to improve their medical use in periodontitis treatment. Spectrophotometric measurements showed a time- and concentration-dependent increase of AgNP formation in each suspension variant. Transmission electron microscopy revealed spherical morphology of AgNP in collagen and their mean diameter size was around 30?nm. The particle size distribution and zeta potential values of AgNP in collagen were determined by dynamic light scattering measurements. The surface charge of AgNP in collagen was positive, while commercial AgNP stabilized in citrate had negative surface charge. In vitro cytotoxicity testing of AgNP in collagen showed that they were biocompatible with human gingival fibroblasts in a wider range of concentrations than commercial nanoparticles. The antibacterial activity of AgNP in collagen against two pathogenic strains present in the periodontal pocket was dose-dependent and higher than that of AgNP in citrate. All these results demonstrated that AgNP prepared in collagen gel had improved properties, like small diameter, positive surface charge, high biocompatibility in human gingival fibroblasts, efficiency against bacterial growth and, thus, better therapeutic potential in periodontal disease treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号