首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15696篇
  免费   1637篇
  国内免费   463篇
电工技术   182篇
综合类   886篇
化学工业   6532篇
金属工艺   542篇
机械仪表   132篇
建筑科学   295篇
矿业工程   422篇
能源动力   765篇
轻工业   4940篇
水利工程   46篇
石油天然气   566篇
武器工业   21篇
无线电   302篇
一般工业技术   1165篇
冶金工业   646篇
原子能技术   299篇
自动化技术   55篇
  2024年   33篇
  2023年   229篇
  2022年   409篇
  2021年   503篇
  2020年   588篇
  2019年   511篇
  2018年   483篇
  2017年   558篇
  2016年   560篇
  2015年   583篇
  2014年   867篇
  2013年   1085篇
  2012年   1266篇
  2011年   1246篇
  2010年   876篇
  2009年   798篇
  2008年   712篇
  2007年   951篇
  2006年   858篇
  2005年   733篇
  2004年   606篇
  2003年   527篇
  2002年   475篇
  2001年   387篇
  2000年   357篇
  1999年   294篇
  1998年   209篇
  1997年   167篇
  1996年   150篇
  1995年   130篇
  1994年   114篇
  1993年   98篇
  1992年   90篇
  1991年   69篇
  1990年   57篇
  1989年   42篇
  1988年   28篇
  1987年   22篇
  1986年   18篇
  1985年   24篇
  1984年   20篇
  1983年   16篇
  1982年   12篇
  1981年   7篇
  1980年   11篇
  1979年   4篇
  1976年   2篇
  1973年   2篇
  1959年   4篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Metal organic frameworks (MOFs) containing zirconium secondary building units (SBUs) in UiO-67 and related MOFs, are highly active for neutralizing both the chemical warfare agents and simulants, such as dimethyl methylphosphonate (DMMP). However, two recent publications gave conflicting reports of DMMP reaction with UiO-67 under ultra high vacuum (UHV) conditions, with one reporting chemisorption and reaction (Wang et al., J Phys Chem C, 2017, 121, 11261–11272) and the other reporting only physisorption and reversible desorption (Ruffley et al., J Phys Chem C, 2019, 123, 19748–19758) from very similar temperature programmed desorption experiments. We show that the discrepancy between these experiments may be explained by different levels of missing linker defects in the UiO-67 samples. We present density functional theory calculations showing that SBU sites having two-adjacent missing linkers exhibit reaction barriers that are about 30 kJ/mol lower than SBU sites having a single missing linker. We also show that topology of the undercoordinated sites plays an important role in the reaction barrier under UHV conditions.  相似文献   
2.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   
3.
Microfluidic devices intensify transport phenomena and can improve chemical processes. New manufacturing processes and materials are perpetually developed due to constantly growing interest in process intensification. In this contribution, the authors present the design and application of polyimide-foil-based microfluidic mixing devices manufactured by reactive ion etching. As appropriate model reaction system, acid-catalyzed 2,2-dimethoxypropane (DMP) hydrolysis was chosen and investigated in three different mixing structure with varying flow rate. Energy dissipation rates were calculated to estimate mixing performances. The results show good mixing quality for Reynolds numbers between 10 and 100 and similar mixing times scales for all investigated microstructured mixers.  相似文献   
4.
The hydrolysis of sodium borohydride (NaBH4) over catalysts is a promising method to produce hydrogen. Although Co-based catalysts exhibit high activity for NaBH4 hydrolysis, they are still far from satisfying practical applications, especially their poor durability in alkaline media. Herein, a carbon shell structure was designed and synthesized to improve the stability of the mixture of Co0 and CoxOy nanofilms (Co/CoxOy@C) during NaBH4 hydrolysis via a facile polymerization-pyrolysis strategy with Co/CoxOy nanofilms as the precursor. As a result, the Co/CoxOy@C catalyst can achieve a remarkable H2 generation rate of 4348.6 mL min?1 gCo?1 with a low activation energy of 43.6 kJ mol?1, which is superior to most previously reported catalysts. Moreover, the catalyst shows high stability with an H2 generation-specific rate of 79% after five cycles. The excellent performance of carbon substrate can well prevent the agglomeration of Co-based nanoparticle and improve the corrosion resistance of the active Co to BO2? and OH?. This work would widen the road for the preparation of nanoconfined catalysts, which has prospective application potentials for H2 production from NaBH4 hydrolysis.  相似文献   
5.
《Ceramics International》2022,48(12):17185-17195
This study introduces micro-nano bubbles (MNBs) in the process of polishing zirconia ceramics through sodium borohydride hydrolysis to assist in polishing yttria-stabilized zirconia (YSZ). Compared with conventional silica sol, the material removal rate using this MNB-assisted technology is increased by 261.4%, and a lower surface roughness of 1.28 nm can be obtained. Raman, X-ray diffraction, and X-ray photoelectron spectroscopy are used to study the structural changes and phase stability of the YSZ during different polishing periods. The results show that MNBs are the key factor promoting the transformation from the tetragonal phase to the monoclinic phase on the surface of the YSZ during polishing. The H2O molecules (or OH? ions) on the surface of the YSZ are driven by the thermal kinetic energy of the micro-jets formed by the collapse of micro-bubbles, and they permeate to occupy more oxygen vacancies in the crystal lattice. Atomic force microscopy and nano-indentation tests show that the micro-protrusions on the surface of the YSZ preferentially undergo phase transformation, and their hardness decreases. This promotes abrasives to preferentially remove rough spots on the surface and achieve more efficient polishing. We believe this work adds valuable insights regarding low-temperature degradation and ultra-precise machining of YSZ ceramic materials.  相似文献   
6.
Konjac glucomannan/sodium alginate composite edible boba (KGM/SA-boba) with good taste is very popular in China, and it is an outstanding carrier for health potential ingredients. In this work, KGM/SA-boba were fortified with 0.25, 0.50, 0.75 and 1.00% purple sweet potato anthocyanin (PSPA), then characterised by the water distribution, texture, microstructure, in vitro release property of PSPA and antioxidant capacity. LF-NMR analysis demonstrated that the free water of KGM/SA-boba could transfer to tightly bound water with the addition of PSPA that made it with better water-binding ability, higher springiness and lower hardness. And the results of SEM and rheology showed that PSPA could stabilise the microstructure of KGM/SA-boba by forming more amorphous regions and hydrogen bonds proved by the results of DSC and FT-IR. Furthermore, 50% of PSPA in PSPA-fortified KGM/SA-boba can be released at the first hour in a simulated gastrointestinal environment. And the scavenging capacity of DPPH and ABTS of the PSPA-fortified KGM/SA-boba after digestion was higher than that of PSPA alone. Generally, PSPA could improve the texture while KGM/SA-boba in turn would make PSPA more stable in the gastrointestinal digestive system.  相似文献   
7.
Alkaline aqueous solution of sodium borohydride NaBH4 (denoted SB-fuel) is an indirect fuel when it is used to generate H2 by hydrolysis, with the as-generated H2 feeding a fuel cell, and it is a direct fuel when it is an anodic fuel of a direct fuel cell. However, SB-fuel suffers from a major drawback: NaBH4 spontaneously hydrolyzes. Our study falls within this context. We studied the instability, at the NMR scale and over 12 weeks, of a series of SB-fuels (initial NaBH4 concentration from 3.65 to 31.22 wt%, NaOH concentration from 1 to 16 M, and temperature between ?15 and 60 °C) to find the conditions at which SB-fuel can be stored for weeks in relative safety. We found that SB-fuel with a NaOH concentration of ≥8 M is relatively stable under cold conditions (?15 and 4 °C). In these conditions, NaBH4 is not prevented from hydrolyzing, but the reaction is significantly mitigated. Otherwise, our study highlights the gaps in our understanding of the SB-fuel, emphasizes SB-fuel is a new concept of fuel (it should not be seen as any current fuel), and points out the challenges for attaining higher technology readiness levels.  相似文献   
8.
In the present study, metal-free catalysts for efficient H2 generation from NaBH4 methanolysis was produced for the first time from apricot kernel shells with two-step activation. The first stage of the two-stage activation includes the production of activated carbon with the KOH agent (AKOH), and the second stage includes hydrothermally HNO3 activation with oxygen doping (O doped AKOH + N). The hydrogen production rate (HGR) and the activation energy (Ea) of the reaction with the obtained metal-free catalyst (10 mg) were determined as 14,444 ml min?1 g?1 and 7.86 kJ mol?1, respectively. The structural and physical-chemical properties of these catalysts were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy), elemental CHNS analysis, FT-IR (Fourier transform infrared spectroscopy), and nitrogen adsorption analysis. Also, the reusability results of this metal-free catalyst for H2 production are promising.  相似文献   
9.
The sodium borohydride, NaBH4, hydrolysis mechanism is studied via the H2O/D2O kinetic isotope effect (KIE). This reaction is of importance as NaBH4 is considered as a hydrogen storage material. Nowadays, hydrogen is thought to be one of the most promising and efficient clean energy carriers. In order to control the rate of the hydrogen evolution reaction (HER), one has to understand the mechanism of its production. The H2O/D2O KIE of the reactions of NaBH4 and NaBD4 with water was studied in solutions containing a ratio of H2O/D2O = 1.00. The separation factor, α, of both reactions is α = 5.0 ± 1.0. The rate of the hydrolysis of BD4? in H2O is faster than that of BH4?. The results point out that the rate-determining step in all hydrolysis stages is the H–OH bond scission.  相似文献   
10.
《Ceramics International》2022,48(2):2298-2305
As a promising anode candidate, hierarchical porous transition metal oxide nanosheets (TMO-NSs) have attracted significant interest due to their various advantages of abundant active sites, high specific capacity and shortened ion/electrons transport pathways. Although the TMO-NSs have been developed in the past decades, the previous synthesis strategies have some drawbacks such as high cost, complex synthesis techniques, and the requirement of special instruments. Herein, we develop a generalized and facile biomorphic method to synthesize various controllable hierarchical porous TMO-NSs by using waste bagasse as biotemplate. Furthermore, the porosity and pore size of as-prepared hierarchical porous TMO-NSs can be adjusted by changing the precursor solution concentration. Novel hierarchical porous TMO-NSs have been successfully prepared for many ternary or binary TMO, such as NiFe2O4, ZnFe2O4, ZnMn2O4, NiO and ZnO. Owing to their unique nanostructure, as-synthesized hierarchical porous TMO-NSs show an excellent electrochemical performance when used as anode for Li/Na-ion batteries. We believe that various hierarchical porous TMO-NSs available from the green, economical and convenient biomorphic strategy may lead to further developments in research and application on TMO-NSs materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号