首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292465篇
  免费   26825篇
  国内免费   18714篇
电工技术   33420篇
技术理论   8篇
综合类   25684篇
化学工业   37444篇
金属工艺   16856篇
机械仪表   23453篇
建筑科学   21173篇
矿业工程   11079篇
能源动力   11284篇
轻工业   18354篇
水利工程   8194篇
石油天然气   11077篇
武器工业   3985篇
无线电   22132篇
一般工业技术   22768篇
冶金工业   13764篇
原子能技术   3271篇
自动化技术   54058篇
  2024年   1344篇
  2023年   4421篇
  2022年   6774篇
  2021年   8155篇
  2020年   9459篇
  2019年   7944篇
  2018年   7438篇
  2017年   9743篇
  2016年   10312篇
  2015年   10780篇
  2014年   18299篇
  2013年   18021篇
  2012年   21028篇
  2011年   22219篇
  2010年   16500篇
  2009年   16830篇
  2008年   16197篇
  2007年   20169篇
  2006年   17964篇
  2005年   15468篇
  2004年   12948篇
  2003年   11351篇
  2002年   9413篇
  2001年   7898篇
  2000年   6892篇
  1999年   5606篇
  1998年   4409篇
  1997年   3918篇
  1996年   3271篇
  1995年   2649篇
  1994年   2280篇
  1993年   1708篇
  1992年   1378篇
  1991年   1023篇
  1990年   872篇
  1989年   683篇
  1988年   520篇
  1987年   321篇
  1986年   268篇
  1985年   236篇
  1984年   264篇
  1983年   194篇
  1982年   184篇
  1981年   109篇
  1980年   104篇
  1979年   84篇
  1978年   58篇
  1977年   52篇
  1959年   30篇
  1951年   38篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
We report a simple processing method to simultaneously improve the efficiency and stability of organic solar cells (OSCs). Poly(4-styrene sulfonate)-doped poly(3,4-ethylenedioxy-thiophene (PEDOT:PSS), widely used as hole transport layer (HTL) in OSCs, tends to accelerate the degradation of devices because of its hygroscopic and acidic properties. In this regard, we have modified PEDOT:PSS to reduce its hygroscopic and acidic properties through a condensation reaction between PEDOT:PSS and poly(ethylene glycol) methyl ether (PEGME) in order to improve the efficiency and stability of OSCs. As a result, the power conversion efficiency (PCE) increased by 21%, from 2.57% up to 3.11%. A better energy level alignment by the reduced work function of the modified PEDOT:PSS with a highest occupied molecular orbital (HOMO) level of poly(3-hexylthiophene-2,5-diyl) (P3HT) is considered the origin of the improved the efficiency. The half-life of OSCs with PEDOT:PSS modified with PEGME buffer layer also increased up to 3.5 times compared to that of devices with pristine PEDOT:PSS buffer layer.  相似文献   
2.
The development of a high cooling power and high efficiency 4.2 K two stage G-M cryocooler is critically important given its broad applications in low temperature superconductors, MRI, infrared detector and cryogenic electronics. A high efficiency 1.5 W/4.2 K pneumatic-drive G-M cryocooler has recently been designed and developed by ARS. The effect of expansion volume rate and operation conditions on the cooling performance has been experimentally investigated. A typical cooling performance of 1.5 W/4.2 K has been achieved, and the minimum temperature of the second stage is 2.46 K. The steady input power of the compressor at 60 Hz is 6.8 kW, while the operation speed of the rotary valve is 30 rpm. A maximum cooling power of 1.75 W/4.2 K has been obtained in test runs.  相似文献   
3.
Although hybrid Petri net (HPN) is a popular formalism in modelling hybrid production systems, the HPN model of large scale systems gets substantially complicated for analysis and control due to large dimensionality of such systems. To overcome this problem, a typical approach is to decompose the net into subnets and then control the plant through hierarchical or decentralized structures. Although this concept has been widely discussed in the literature for discrete PNs, there is a lack of research for HPNs. In this paper, a new method of decomposition of first-order hybrid Petri nets (FOHPNs) is proposed first and then the hierarchical control of the subnets through a coordinator is introduced. The advantage of using the proposed approach is validated by an existing example. A sugar milling case study is analysed by using a decomposed FOHPN model and the optimization results are compared against the results of the approaches presented in other papers. Simulation results show not only an improvement in production rate, but also show the ability to control the plant online. In addition, by using the hierarchical control structure for an FOHPN model, it is possible to reduce the cost of communication links, improve the reliability of the system, maintain the plant locally, and partially redesign the system.  相似文献   
4.
The supervision of a hybrid power plant, including solar panels, a gas microturbine and a storage unit operating under varying solar power profiles is considered. The Economic Supervisory Predictive controller assigns the power references to the controlled subsystems of the hybrid cell using a financial criterion. A prediction of the renewable sources power is embedded into the supervisor. Results deteriorate when the solar power is unsteady, owing to the inaccuracy of the predictions for a long-range horizon of 10 s. The receding horizon is switched between an upper and a lower value according to the amplitude of the solar power trend. Theoretical results show the relevance of horizon switching, according to a tradeoff between performance and prediction accuracy. Experimental results, obtained in a Hardware In the Loop (HIL) framework, show the relevance of the variable horizon approach. Power amplifiers allow us to simulate virtual components, such as a gas microturbine, and to blend their powers with that of real devices (storage unit, real solar panels). In this case, fuel savings, reaching 15%, obtained under unsteady operating conditions lead to a better overall performance of the hybrid cell. The overall savings obtained in the experiments amount to 12%.  相似文献   
5.
在简述V.35接口的基础上针对V.35接口速率可变的应用需求提出了一种速率可变的帧结构,该帧结构可支持N×64kb/s(3≤N≤32)速率,从而在V.35接口上实现了多种速率的低速业务传输.  相似文献   
6.
Rectangular section control technology(RSCT)was introduced to achieve high-precision profile control during silicon steel rolling.The RSCT principle and method were designed,and the whole RSCT control strategy was developed.Specifically,RSCT included roll contour design,rolling technology optimization,and control strategy development,aiming at both hot strip mills(HSMs)and cold strip mills(CSMs).Firstly,through the high-performance variable crown(HVC)work roll optimization design in the upper-stream stands and the limited shifting technology for schedule-free rolling in the downstream stands of HSMs,a hot strip with a stable crown and limited wedge,local spot,and single wave was obtained,which was suitable for cold rolling.Secondly,an approximately rectangular section was obtained by edge varying contact(EVC)work roll contour design,edge-drop setting control,and closed loop control in the upper-stream stands of CSMs.Moreover,complex-mode flatness control was realized by coordinating multiple shape-control methods in the downstream stands of CSMs.In addition,the RSCT approach was applied in several silicon-steel production plants,where an outstanding performance and remarkable economic benefits were observed.  相似文献   
7.
Strain rate is not only an important measure to characterize the deformation property, but also an important parameter to analyze the dynamic mechanical properties of rock materials. In this paper, by using the SHPB test system improved with high temperature device, the dynamic compressive tests of sandstone at seven temperatures in the range of room temperature to 1000 °C and five impact velocities in the range of 11.0–15.0 m/s were conducted. Investigations were carried out on the influences of strain rate on dynamic compressive mechanical behaviors of sandstone. The results of the study indicate that the enhancement effects of strain rates on dynamic compressive strength, peak strain, energy absorption ratio of sandstone under high temperatures still exist. However, the increase ratios of dynamic compressive strength, peak strain, and energy absorption ratio of rock under high temperature compared to room temperature have no obvious strain rate effects. The temperatures at which the strain rates affect dynamic compressive strength and peak strain most, are 800, and 1000 °C, respectively. The temperatures at which the strain rates affect dynamic compressive strength and peak strain weakest, are 1000 °C, and room temperature, respectively. At 200 and 800 °C, the strain rate effect on energy absorption ratio are most significant, while at 1000 °C, it is weakest. There are no obvious strain rate effects on elastic modulus and increase ratio of elastic modulus under high temperatures. According to test results, the relationship formula of strain rate with high temperature and impact load was derived by internalizing fitting parameters. Compared with the strain rate effect at room temperature condition, essential differences have occurred in the strain rate effect of rock material under the influence of high temperature.  相似文献   
8.
The load applied to a machine tool feed drive changes during the machining process as material is removed. This load change alters the Coulomb friction of the feed drive. Because Coulomb friction accounts for a large part of the total friction the friction compensation control accuracy of the feed drives is limited if this nonlinear change in the applied load is not considered. This paper presents a new friction compensation method that estimates the machine tool load in real time and considers its effect on friction characteristics. A friction observer based on a Kalman filter with load estimation is proposed for friction compensation control considering the applied load change. A specially designed feed drive testbed that enables the applied load to be modified easily was constructed for experimental verification. Control performance and friction estimation accuracy are demonstrated experimentally using the testbed.  相似文献   
9.
针对区域地面沉降监测点数量有限、分布不均的情况,一般采用空间插值的手段建立表面拟合模型来解决。基于分形插值,采用随机选择迭代函数的思想对传统的趋势面拟合法作出改进,改进后拟合优度系数提高0.03,达到0.995,且改进前后的拟合结果符合显著性检验的要求。实验结果表明:改进前后趋势面拟合法拟合结果满足地面沉降监测的精度要求,改进后方法的拟合优度更高,对现实地面沉降量变化的描绘更加真实,可为沉降灾害评价工作提供更准确的依据。  相似文献   
10.
The reconstructed surface structure of the II–VI semiconductor ZnTe (110), which is a promising material in the research field of semiconductor spintronics, was studied by scanning tunneling microscopy/spectroscopy (STM/STS). First, the surface states formed by reconstruction by the charge transfer of dangling bond electrons from cationic Zn to anionic Te atoms, which are similar to those of IV and III–V semiconductors, were confirmed in real space. Secondly, oscillation in tunneling current between binary states, which is considered to reflect a conformational change in the topmost Zn–Te structure between the reconstructed and bulk-like ideal structures, was directly observed by STM. Third, using the technique of charge injection, a surface atomic structure was successfully fabricated, suggesting the possibility of atomic-scale manipulation of this widely applicable surface of ZnTe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号