首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5265篇
  免费   626篇
  国内免费   345篇
电工技术   667篇
综合类   293篇
化学工业   1180篇
金属工艺   766篇
机械仪表   83篇
建筑科学   47篇
矿业工程   167篇
能源动力   501篇
轻工业   61篇
水利工程   6篇
石油天然气   89篇
武器工业   22篇
无线电   648篇
一般工业技术   987篇
冶金工业   449篇
原子能技术   92篇
自动化技术   178篇
  2024年   12篇
  2023年   149篇
  2022年   177篇
  2021年   199篇
  2020年   249篇
  2019年   230篇
  2018年   169篇
  2017年   192篇
  2016年   207篇
  2015年   185篇
  2014年   253篇
  2013年   282篇
  2012年   339篇
  2011年   369篇
  2010年   317篇
  2009年   307篇
  2008年   261篇
  2007年   358篇
  2006年   313篇
  2005年   290篇
  2004年   252篇
  2003年   212篇
  2002年   160篇
  2001年   137篇
  2000年   120篇
  1999年   78篇
  1998年   54篇
  1997年   55篇
  1996年   41篇
  1995年   36篇
  1994年   37篇
  1993年   36篇
  1992年   31篇
  1991年   16篇
  1990年   18篇
  1989年   29篇
  1988年   17篇
  1987年   3篇
  1986年   9篇
  1985年   8篇
  1984年   7篇
  1983年   3篇
  1982年   8篇
  1981年   1篇
  1980年   4篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1951年   3篇
排序方式: 共有6236条查询结果,搜索用时 22 毫秒
1.
The low performance of open-cathode proton-exchange-membrane fuel cells (OCPEMFCs) is attributed to the low-humidity ambient air supplied to the cathode using electric fans. To improve the OCPEMFC performance, this paper proposes a novel humidification method by collecting water purged from the anode and supplying it to the open cathode. The OCPEMFC performance is evaluated at various humidifier distances from the cathode inlet, and it is compared with that where no humidifier is used when the OCPEMFC operates under three different current levels of 1, 5, and 8 A. The results show that the novel design improves the stack power, and optimal performance is achieved at a humidifier distance of 2 cm. The energy efficiency achieves an improvement between 1.4% and 1.8% when a humidifier is used.  相似文献   
2.
《Ceramics International》2022,48(7):9124-9133
The main obstacles in lithium-ion battery are limited by rate performance and the rapid capacity fading of LiNi0.8Co0.1Mn0.1O2 (NCM811). Herein, a novel three-dimensional (3D) hierarchical coating material has been fabricated by in situ growing carbon nanotubes (CNTs) on the surfaces of Ni–Al double oxide (Ni–Al-LDO) sheets (named as LDO&CNT) with Ni–Al double hydroxide (Ni–Al-LDH) as both the substrate and catalyst precursor. The resultant LDO&CNT nanocomposites are uniformly coated on the surfaces of NCM811 by the physical mixing method. The rate capability of the resultant cathode material retains to 78.80% at a current rate of 3C. Its capacity retention increases by 6.7–14.42% compared with pristine NCM811 after 100 cycles within a potential range of 2.75–4.3 V at 0.5C. The improved rate capability and cycle performance of NCM811 are assigned to the synergistic effects between Ni–Al-LDO and CNTs. The hierarchical LDO&CNT nanocomposites coating on the surface of NCM811 avoids the aggregation of conductive CNTs and the stacking of Ni–Al-LDO nanosheets. Furthermore, it accelerates Li+ and electrons shuttle and reduces the reaction of Li2O with H2O and CO2 in air, which results in Li2CO3 and LiOH alkali formation on the NCM811 surface.  相似文献   
3.
铝业废阴极炭块资源化利用技术研究   总被引:1,自引:0,他引:1  
为实现铝业废阴极炭块在钢铁冶金流程中资源化利用,通过深入研究废阴极炭块的相关物性,结合炼钢工艺对炭素及氟化物的物质需求,明确了废阴极炭块的无害化资源利用原理,工业试验结果表明废阴极炭块在炼钢转炉内可较好地实现无害化资源利用。  相似文献   
4.
《Ceramics International》2022,48(14):20220-20227
A specially designed experimental device was used in laboratory to investigate the corrosion of mullite during the calcination of Li(NixCoyMnz)O2 (LNCM) materials. The anti-corrosion tests were carried out at 1000, 1100, 1200 and 1300 °C, and characterized with X-ray diffraction and scanning electron microscopy. The influence of temperature on the interactions between mullite insulation materials and LNCM materials was determined. In addition, the high-temperature creep properties of the mullite insulation materials before and after corrosion were tested. The laboratory scale tests, thermodynamic and kinetic calculations allowed a more comprehensive understanding of the evolution of the mullite insulation materials during serving for the roasting process of LNCM materials. Through this research, it is suggested that the upgrading of the kiln lining in the lithium battery industry should select materials with excellent resistance to alkali corrosion, especially excellent resistance to Li+ corrosion.  相似文献   
5.
A new method for enhancing the charge separation and photo‐electrochemical stability of CuBi2O4 photoelectrodes by sequentially depositing Bi2O3 and CuO layers on fluorine‐doped tin oxide substrates with pulsed laser deposition (PLD), followed by rapid thermal processing (RTP), resulting in phase‐pure, highly crystalline films after 10 min at 650 °C, is reported. Conventional furnace annealing of similar films for 72 h at 500 °C do not result in phase‐pure CuBi2O4. The combined PLD and RTP approach allow excellent control of the Bi:Cu stoichiometry and results in photoelectrodes with superior electronic properties compared to photoelectrodes fabricated through spray pyrolysis. The low photocurrents of the CuBi2O4 photocathodes fabricated through PLD/RTP in this study are primarily attributed to their low specific surface area, lack of CuO impurities, and limited, slow charge transport in the undoped films. Bare (without protection layers) CuBi2O4 photoelectrodes made with PLD/RTP shows a photocurrent decrease of only 26% after 5 h, which represents the highest stability reported to date for this material. The PLD/RTP fabrication approach offers new possibilities of fabricating complex metal oxides photoelectrodes with a high degree of crystallinity and good electronic properties at higher temperatures than the thermal stability of glass‐based transparent conductive substrates would allow.  相似文献   
6.
Electron emission characteristic, electrical conductivity of polycrystalline mayenite (12CaO·7Al2O3) electride, formation of [Ca24Al28O64]4+(e)4 framework as a function of phase content, and microstructure have been investigated. The mayenite microstructure was investigated using high-resolution transmission microscopy which revealed the type cage structure of 12CaO·7Al2O3 partially filled by extra-framework oxygen ions. Incorporation of electrons by means of carbon ion template 12CaO·7Al2O3 produces complex structure, and an incomplete ion template 12CaO·7Al2O3 structure consisting of mixture of a [Ca24Al28O64]4+(e)4 and [Ca24Al28O64]4+(O2−)2 framework had a direct effect on the electron emission. Surface chemistry and stability of the 12CaO·7Al2O3 electride have been studied using x-ray photoelectron spectroscopy. The work function of phase pure 12CaO·7Al2O3 electride was determined from direct thermionic emission data and compared to the measurement from ultraviolet photoelectron spectroscopy (UPS). Depending on the extent of ion template of 12CaO·7Al2O3 structure, a work function of 0.9–1.2 eV and 2.1–2.4 eV has been measured and thermionic emission initiating at 600°C.  相似文献   
7.
《Ceramics International》2022,48(16):23341-23347
In recent years, the rapid development of Li(NixCoyMn1-x-y)O2 (LNCM) materials for application in ternary lithium-ion batteries has led to an increased demand for refractory kiln saggars in industries. However, saggars used for firing ternary Li-ion battery cathode materials are often subjected to severe corrosion and spalling. To investigate the damage mechanism of the saggar materials, non-contact corrosion experiments were designed to study the effects of the precursor additions, calcination temperature, and number of calcinations during the interaction between mullite saggar and LNCM materials. The phase composition and microstructure of the mullite saggar specimens before and after corrosion were characterized using X-ray diffraction and scanning electron microscopy, respectively, to obtain a comprehensive understanding of the causes of the deterioration of mullite saggar materials during corrosion.  相似文献   
8.
Dispersion of nanocrystalline (94–350 nm) Ce0.9Gd0.1O2-δ in superfine (260–312 nm) Sm1.5Sr0.5NiO4+δ using modified precipitation technique is established using X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Presence of Ce0.9Gd0.1O2-δ grains inhibits grain growth of Sm1.5Sr0.5NiO4+δ, which provides morphological stability (up to 1100 °C). Ce0.9Gd0.1O2-δ concentration dependent behaviours of ionic conductivity, surface exchange rate and electrode polarization resistance (Rp) of composites (determined using electrochemical impedance spectroscopy) are comprehended using percolation model. Three oxygen reduction reaction mechanisms are considered to understand electrochemical performance. Minimum Rp (0.81 Ω cm2 at 700 °C) for 70Sm1.5Sr0.5NiO4+δ:30Ce0.9Gd0.1O2-δ is correlated to percolation threshold (optimum (i) electrochemically active sites (ii) oxygen reduction reaction kinetics, (iii) O2- conductivity and (iv) charge transfer rate). Nano crystallite size of Ce0.9Gd0.1O2-δ is crucial for enhancement in electrochemical performance. Oxygen partial pressure dependent electrochemical impedance spectroscopy studies reveal dominance of coexisting non-charge transfer oxygen adsorption/desorption and bulk O2- diffusion.  相似文献   
9.
In this study, La was doped into the lithium layer of Li-rich cathode material and formed a layered-spinel hetero-structure. The morphology, crystal structure, element valence and kinetics of lithium ion migration were studied by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The La doped lithium-rich cathode material exhibited similar initial discharge capacity of 262.8 mAh g?1 at 0.1 C compared with the undoped material, but the discharge capacity retention rate can be obviously improved to 90% after 50 cycles at 1.0 C. Besides that, much better rate capability and Li+ diffusion coefficient were observed. The results revealed that La doping not only stabilized the material structure and reduced the Li/Ni mixing degree, but also induced the generation of spinel phase to provide three-dimensional diffusion channels for lithium ion migration. Moreover, the porous structure of the doped samples also contributed to the remarkable excellent electrochemical performance. All of these factors combined to significantly improve the electrochemical performance of the material.  相似文献   
10.
To develop an operating strategy for maximizing the energy efficiency of open-cathode proton exchange membrane fuel cells (OCPEMFCs), the present study investigates the effect of the fan speed on the stack performance and energy efficiency using a commercially available OCPEMFC system. The temperature, voltage, and current of the stack are monitored, and the energy efficiency is calculated at various stack power levels. The results of the system with a lab-developed controller are compared with the commercial system with a built-in controller. It is found that the fan speed should be minimum to reduce the auxiliary power consumption and that the stack should be efficiently heated to enhance the electrochemical reaction. In addition, it is noticed that the stack performance dramatically drops when the stack temperature is above 75 °C, due to the membrane dehydration. Overall, the results show that the stack temperature is an important indicator for controlling the fan speed for optimization of energy efficiency, and for stack powers of 50, 60, 70, and 80 W, the peak values of energy efficiencies are 38.0%, 38.3%, 38.5%, and 38.3% at the duty cycles of 0.2, 0.2, 0.25, and 0.3, respectively, which are 28–38% higher than the commercially available OCPEMFC system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号