首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29815篇
  免费   2531篇
  国内免费   931篇
电工技术   961篇
综合类   1836篇
化学工业   12620篇
金属工艺   1538篇
机械仪表   1026篇
建筑科学   2438篇
矿业工程   323篇
能源动力   2874篇
轻工业   1644篇
水利工程   311篇
石油天然气   646篇
武器工业   168篇
无线电   1146篇
一般工业技术   4334篇
冶金工业   773篇
原子能技术   176篇
自动化技术   463篇
  2024年   56篇
  2023年   593篇
  2022年   878篇
  2021年   1143篇
  2020年   1109篇
  2019年   937篇
  2018年   693篇
  2017年   901篇
  2016年   717篇
  2015年   741篇
  2014年   1454篇
  2013年   1413篇
  2012年   2182篇
  2011年   2201篇
  2010年   1743篇
  2009年   1680篇
  2008年   1449篇
  2007年   2064篇
  2006年   1765篇
  2005年   1556篇
  2004年   1370篇
  2003年   1193篇
  2002年   909篇
  2001年   824篇
  2000年   680篇
  1999年   572篇
  1998年   494篇
  1997年   362篇
  1996年   360篇
  1995年   268篇
  1994年   275篇
  1993年   206篇
  1992年   152篇
  1991年   99篇
  1990年   56篇
  1989年   40篇
  1988年   31篇
  1987年   21篇
  1986年   22篇
  1985年   11篇
  1984年   11篇
  1983年   7篇
  1982年   6篇
  1981年   1篇
  1980年   10篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1959年   1篇
  1951年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
2.
A new aqueous slurry-based laminated object manufacturing process for porous ceramics is proposed: firstly, an organic mesh sheet is pre-paved as a pore-forming template before slurry layer scraping; secondly, the 2D pattern is built with laser outline cutting of the dried mesh–ceramic composite layer; finally, the pore structure is formed after degreasing and sintering. Alumina parts with porosities of 51.5 %, round hole diameters of 80 ± 5 μm were fabricated using 70 wt. % solid content slurry and 100 mesh nylon net. Using an organic mesh as the framework and template not only reduces the risk of damage of the green body but also ensures the regularity, uniformity and connectivity of the micron scaled pore network. The layer-by-layer drying method avoids the delamination phenomenon and improves the paving density. The new method can realize the flexible design of the pore structure by using various organic mesh templates.  相似文献   
3.
In this study, chemically bonded phosphate ceramic coatings (CBPCCs) with different contents of aluminum phosphate (AP) are prepared on stainless steel (AISI 304L). Differential scanning calorimetry, X-ray diffraction, contact angle test, and a tribocorrosion experiment are carried out to clarify the role of AP in the tribocorrosion performance of CBPCCs. The results show that, with the increase in the AP content, the enthalpy of curing increases because of the greater formation of the bonding phase AlPO4. Both in static corrosion and in tribocorrosion, the corrosion current density of CBPCCs achieves the lowest value when the weight ratio of AP to polytetrafluoroethylene is about 0.78. Additionally, the influence mechanism of AP on tribocorrosion is clarified. AlPO4 from the reaction between AP and Al2O3 has excellent mechanical properties and can enhance the wear resistance of CBPCCs by reducing the mechanical wear and the increased wear due to corrosion. The alumina particles wrapped by AlPO4 can form a dense and smooth surface and change the direction of electrolyte propagation, which leads to the increase in the tribocorrosion resistance of CBPCCs.  相似文献   
4.
ABSTRACT

The hydrophobic polyether sulfone membranes were prepared by the sol-gel method to be applied in an air gap membrane distillation setup for desalination. The surface modifications were carried out using Trimethylsilyl chloride (TMSCl) and Methyltrimethoxysilane (MTMS) solutions. The membranes were characterized using Attenuated Total Reflection Infrared (ATR-IR) spectroscopy, Scanning Electron Microscopy (SEM), and Optical Contact Angle (OCA) methods. The effects of membrane preparation as well as operating conditions such as temperature difference, salt concentration, feed rotation speed, and cold-side temperature on membrane performance were investigated using central composite design method. It was found that feed temperature has the largest effect among the parameters on the permeation flux. The flow rate and salt rejection of the membrane in the optimum conditions were 4.47 Kg m?2 h?1 and 99.37%, respectively.  相似文献   
5.
This work focuses on identifying the rate-determining step of oxygen transport through La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes with symmetric and asymmetric architectures. The best oxygen semipermeation fluxes are 3.4 10−3 mol. m-2.s-1 and 6.3 10−3 mol. m-2.s-1 at 900 °C for the symmetric membrane and asymmetric membrane with a modified surface. The asymmetric membrane with a modified surface leads to an increase of approximately 7 times the oxygen flux compared to that obtained with the La0.5Sr0.5Fe0.7Ga0.3O3-δ dense membrane without surface modification. This work also shows that the oxygen flux is mainly governed by gaseous oxygen diffusion through the porous support of asymmetric La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes.  相似文献   
6.
SrF2 transparent ceramic is a promising upconversion material due to the low phonon energy. The effect of different sintering temperatures on Er:SrF2 transparent ceramics was investigated. The suitable sintering temperature for Er:SrF2 transparent ceramics was 900 °C by hot-pressed sintering in this study. High quality of Er:SrF2 transparent ceramics with different doping concentrations were obtained. The upconversion luminescence spectra and decay behavior were compared between Er:SrF2 and Er:CaF2 transparent ceramics with different Er3+ doping concentration. The green emission of 5 at.% Er:SrF2 ceramic was much stronger than that of 5 at.% Er:CaF2 ceramic, while the red emission of Er:SrF2 ceramic was almost the same as that of Er:CaF2 ceramic. The upconversion luminescence lifetime of Er:SrF2 transparent ceramics was longer than that of Er:CaF2.All the results indicated Er:SrF2 transparent ceramics was a candidate for green fluorescent upconversion materials.  相似文献   
7.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
8.
A novel TiO2 thin film was prepared on the ceramic hollow fiber by the sol-gel method using poly(vinylpyrrolidone) (PVP) and polyvinyl alcohol (PVA) as additives. SEM images verified the formation of TiO2 layer with various thickness using different composition of titania sols. The effect of the PVP and PVA contents on the TiO2 sol properties, the separation and the antifouling performance of the ultrafiltration membranes were investigated thoroughly. When the contents of PVP and PVA were 1.0 wt% and 0.8 wt%, respectively, the resultant membrane showed a thickness of 0.55 μm with a pure water flux of 255 L m?2 h?1. In addition, the adherent foulant bovine serum albumin was applied to evaluate the antifouling performance. During the three fouling-recovery cycles, the flux recovery ratio and the flux decay ratio maintained about 99% and 30%. The BSA flux and rejection were still 169 L m?2 h?1 and 96.9% after the cycles, indicating a superior antifouling property.  相似文献   
9.
Voltage reversal induced by hydrogen starvation can severely corrode the anode catalyst support and deteriorate the performance of proton exchange membrane fuel cells. A material-based strategy is the inclusion of an oxygen evolution reaction catalyst (e.g., IrO2) in the anode to promote water electrolysis over harmful carbon corrosion. In this work, an Ir-Pt/C composite catalyst with high metal loading is prepared. The membrane-electrode-assembly (MEA) with 80 wt% Ir-Pt(1:2)/C shows a first reversal time (FRT) of up to 20 hours, which is about ten times that of MEA with 50 wt% Ir-Pt(1:2)/C does. Furthermore, the MEA with 80 wt% Ir-Pt(1:2)/C exhibits a minimum cell voltage loss of 6 mV@1 A/cm2 when the FRT is terminated in 2 hours, in which the MEA with 50 wt% Ir-Pt(1:2)/C exhibits a voltage loss of 105 mV@1 A/cm2. Further physicochemical and electrochemical characterizations demonstrate that the destruction of anode catalyst layer caused by the voltage reversal process is alleviated by the use of the composite catalyst with high metal loading. Hence, our results reveal that the combination of OER catalyst on the Pt/C with high metal loading is a promising approach to alleviate the degradation of anode catalyst layer during the voltage reversal process for PEMFCs.  相似文献   
10.
In this research, a technical, economic and environmental analysis has been proposed to a Hybrid Solid Oxide Fuel Cell (SOFC) system-based hybrid system including biomass, gas turbine, and Proton Exchange Membrane Electrolyzer. A multi-objective optimization technique has been utilized to improve the overall product cost and the exergy effectiveness based on a developed version of Aquila Optimizer (DAO). The main idea of using the developed version is to improve the accuracy and the precision of the original Aquila optimizer. The system is then authenticated in terms of energy/exergy effectiveness, and energy-economic efficiency. The achievements indicate that employing the optimization algorithm for different configurations provided satisfying results for the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号