首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10921篇
  免费   1408篇
  国内免费   474篇
电工技术   212篇
综合类   786篇
化学工业   5339篇
金属工艺   371篇
机械仪表   244篇
建筑科学   499篇
矿业工程   122篇
能源动力   485篇
轻工业   1464篇
水利工程   140篇
石油天然气   348篇
武器工业   55篇
无线电   486篇
一般工业技术   1674篇
冶金工业   213篇
原子能技术   151篇
自动化技术   214篇
  2024年   36篇
  2023年   284篇
  2022年   379篇
  2021年   575篇
  2020年   533篇
  2019年   422篇
  2018年   403篇
  2017年   447篇
  2016年   471篇
  2015年   539篇
  2014年   667篇
  2013年   761篇
  2012年   809篇
  2011年   791篇
  2010年   571篇
  2009年   656篇
  2008年   511篇
  2007年   674篇
  2006年   623篇
  2005年   578篇
  2004年   402篇
  2003年   367篇
  2002年   298篇
  2001年   224篇
  2000年   143篇
  1999年   93篇
  1998年   67篇
  1997年   79篇
  1996年   60篇
  1995年   56篇
  1994年   43篇
  1993年   27篇
  1992年   37篇
  1991年   32篇
  1990年   13篇
  1989年   19篇
  1988年   10篇
  1987年   15篇
  1986年   12篇
  1985年   18篇
  1984年   9篇
  1983年   14篇
  1982年   16篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1977年   3篇
  1959年   1篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In both developing and industrialized/developed countries, various hazardous/toxic environmental pollutants are entering water bodies from organic and inorganic compounds (heavy metals and specifically dyes). The global population is growing whereas the accessibility of clean, potable and safe drinking water is decreasing, leading to world deterioration in human health and limitation of agricultural and/or economic development. Treatment of water/wastewater (mainly industrial water) via catalytic reduction/degradation of environmental pollutants is extremely critical and is a major concern/issue for public health. Light and/or laser ablation induced photocatalytic processes have attracted much attention during recent years for water treatment due to their good (photo)catalytic efficiencies in the reduction/degradation of organic/inorganic pollutants. Pulsed laser ablation (PLA) is a rather novel catalyst fabrication approach for the generation of nanostructures with special morphologies (nanoparticles (NPs), nanocrystals, nanocomposites, nanowires, etc.) and different compositions (metals, alloys, oxides, core-shell, etc.). Laser ablation in liquid (LAL) is generally considered a quickly growing approach for the synthesis and modification of nanomaterials for practical applications in diverse fields. LAL-synthesized nanomaterials have been identified as attractive nanocatalysts or valuable photocatalysts in (photo)catalytic reduction/degradation reactions. In this review, the laser ablation/irradiation strategies based on LAL are systematically described and the applications of LAL synthesized metal/metal oxide nanocatalysts with highly controlled nanostructures in the degradation/reduction of organic/inorganic water pollutants are highlighted along with their degradation/reduction mechanisms.  相似文献   
2.
The extensive occurrence of textile and pharmaceutical contaminants and their metabolites in water systems has posed significant concerns regarding their possible threat to human health and the environmental system. As a result, herein ZnFe2O4 nanoparticles were synthesized through the use of Monsonia burkeana plant extract. The synthesized nanoparticles were characterized using XRD, FTIR, UV–vis, SEM, EDS, TGA, BET, PL, EPR and VSM. XRD showed that the crystalline structure of ZnFe2O4 nanoparticles with a calculated crystal size of 25.03 nm was formed. FT-IR confirmed the characteristic functional groups contained within the M. burkeana plant were deposited on the formed ferrite nanoparticles. BET analysis confirmed the mesoporous nature of ZnFe2O4 with an average pore diameter of 31.6 nm. Morphological studies demonstrated that the formed nanoparticles had spherical as well as rod-like shapes. ZnFe2O4 photocatalyst illustrated that it may be effortlessly detached by an external magnetic field. The optimum conditions for the 99.8% removal of Methylene Blue was obtained at pH12, within 45min and at the optimum dosage of 25 mg of the catalyst. The as-prepared ZnFe2O4 nanoparticles proved to be easily separated and recycled, and remained efficient even after 5 reuses, proving that the material is highly stable. The ROS studies also demonstrated that electrons are the main factors contributing to the degradation of MB. Upon testing the photocatalytic performance of the sulfonamide antibiotic, sulfisoxazole in water showed a degradation of 67%. This study has shown that these materials can be used in targeting textile and pharmaceutically polluted water.  相似文献   
3.
The organic pollutants in water have been a great environment challenges to human beings, and photocatalytic degradation is an effective method to solve this problem. In this paper, the Rh-loaded cobalt ferrite CoFe2O4 (CFO) nanoparticles have been successfully synthesized by in situ photodeposition of Rh nanoparticles onto the porous CFO particles as the photocatalysts. After incorporating Rh nanoparticles, the CFO/Rh composite has a higher specific surface area and is more efficient in charge separation than the bare CFO. The photocatalytic efficiency of decomposing Malachite Green (MG) is improved from 70% over the bare CFO to 97% over the optimized CFO/Rh in 60 min. The CFO/Rh sample also demonstrates its durability for the degradation of MG in 5 photocatalytic reaction cycles. Additionally, hydroxyl radicals (?OH) and superoxide radicals (?O2?) are proved to be the crucial reactive species during the photocatalytic degradation of MG with CFO/Rh, evidenced by the active species capture experiments. This work provides a useful approach to enhance the photocatalytic activity of semiconductors for degrading organic dyes.  相似文献   
4.
In order to enhance the photocatalytic activity of TiO2 under visible light, Ag nanoparticles were introduced into tridoped B–C–N–TiO2 (TT) catalyst by photoreduction deposition. Ag/B–C–N–TiO2 (ATT) catalysts with the functions of reducing band gap and carrier recombination were prepared. At the same time, the effect of the amount of Ag on the photocatalytic performance of ATT catalyst was investigated. Through XRD, XPS, PL and other characterization methods, the (211)/(101)/Ag interface heterojunction mechanism similar to the traditional Z-scheme heterojunction was proposed. The intervention of Ag nanoparticles changed the P–N interface heterojunction between (211)/(101) to the (211)/(101)/Ag Z-scheme interface heterojunction. The results show that ATT catalyst exhibits the highest photocatalytic activity when the molar amount of Ag is 0.005% with the MB degradation rate of the ATT catalyst (0.01707 min?1), which is 14.59 times of TiO2 (0.00117 min?1) and 2.02 times of TT (0.00847 min?1). In addition, the four cycles efficiencies of ATT for MB degradation were all above 94.00%.This study reveals the possibility of construction of Z-scheme heterojunctions between precious metal nanoparticles and different interfaces of TiO2, and provides a reference for the construction of Z-scheme interface heterojunctions.  相似文献   
5.
《Ceramics International》2021,47(20):28848-28858
The construction of photocatalyst with gradient band structure is guided by the principle of band gap engineering. Rational structural design is advanced and applied to construct a new-typed peculiarly structural and functional carbon-based [TiO2/C]//[Bi2WO6/C] Janus nanofiber modified by g-C3N4 nanosheets heterostructure photocatalyst (denoted as TB-JgHP). The flexible carbon-based [TiO2/C]//[Bi2WO6/C] Janus nanofiber with one side responding to ultraviolet light and the other capturing visible light is fabricated by conjugate electrospinning, and then g-C3N4 nanosheets are uniformly grown in-situ on the surface of the Janus nanofibers by using gas-solid reaction via gasification of urea. The optimized TB-JgHP possesses remarkable hydrogen evolution efficiency (17.48 mmol h−1 g−1) and methylene blue degradation rate (99.2%) under simulated sunlight illumination for 100 min, demonstrating prominent dual-functional characteristics. The enhanced photocatalytic performance benefits from the unique Janus structure as well as the synergistic effects among the triple heterostructures of TiO2 and Bi2WO6, g-C3N4 and TiO2, g-C3N4 and Bi2WO6. The formation of gradient band structure among heterostructures is more conducive to the multi-step separation of photo-induced electron-hole pairs and more effective absorption of light. Further, flexible self-standing carbon-based photocatalysts not only have outstanding electron transport performance, but also are easy to separate from solution with preeminent recyclable stability. Based on a series of characterization techniques, it is further proved that TB-JgHP has higher carrier separation efficiency than the counterpart contrast samples. The formation mechanism of TB-JgHP is proposed, and the construction technique is established. The design philosophy and construction technique presented in this work pave a new avenue for research and development of other heterostructure photocatalysts.  相似文献   
6.
文曼  熊春荣 《精细化工》2021,38(5):981-987
采用溶胶-凝胶法制备CuO-SiO2复合气凝胶,通过在气凝胶孔道内填充TiCl4,然后将其气相水解,得到了在CuO-SiO2气凝胶表面生长了高结晶度的TiO2纳米纤维(CuO-SiO2@TiO2),纤维直径~16 nm.通过XPS、UPS、UV-Vis DRS、荧光光谱(PL)等表征了材料的结构及光电性能.结果表明,制备的CuO-SiO2@TiO2对可见光有明显吸收,且荧光强度较商用TiO2(P25)大幅降低,光生电子-空穴对更加稳定.再在纳米纤维上负载CuO,所得CuO-SiO2@TiO2/CuO在可见光区的荧光强度进一步增强.以300 W氙灯为光源,分别以CuO-SiO2@TiO2及CuO-SiO2@TiO2/CuO为催化剂,无牺牲剂条件下光催化还原CO2,4 h后甲醇产率分别为1304.0及1589.0μmol/g-cat,转换频率(TOF)分别为0.038及0.046 h–1.循环实验表明,纳米纤维具有较好的光催化稳定性,经过4次光催化循环实验后,CuO-SiO2@TiO2/CuO的保留率~94%,甲醇产率可达1472.0μmol/g-cat,TOF为0.042 h–1.  相似文献   
7.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
8.
《Ceramics International》2021,47(23):32882-32890
Transition metals doping has been proved to be a feasible way for tuning the physical properties on the surface and bulk of nanomaterials and also for the good performance in decontamination of emerging pollutants. In this context, doped samples of zinc tin oxide or zinc stannate nanoparticles (ZTO NPs) by several transition metals were synthesized in order to enhance the optical absorbance with the aims of reducing the band gap and therefore ameliorated their photocatalytic activity. They were characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy, Raman spectroscopy and photoluminescence. The XRD patterns and the microscopic observations showed the formation of spherical nanoparticles with an average size of about 30 nm and highly pure ZTO phase with an inverse spinel structure. The Raman spectra were dominated by bands relatives to the F2g (2) and A1g symmetries modes of inverse spinel structure. The band gap Eg is estimated to be 3.75 eV for the undoped sample, and 3.67, 3.64, 3.78 and 3.21 eV, for 2% Fe, 2% Mg, 2% Gd, and 2% Mn doped ZTO samples, respectively.Furthermore, the undoped ZTO NPs have the intrinsic problem of recombination of photogenerated charge carriers. We have shown that the reduction of the band gap and oxygen vacancies resulting from the doping effect could be a useful tool for trapping and avoid the recombination of electrons coming from photosensitized rhodamine B (RhB) under visible light irradiation. Owing to the structural advantages and low band gap, 2% Mn doped ZTO NPs, with the kinetic rate constants k of 0.024 min−1, show enhanced performance for the elimination of RhB in aqueous solution compared to undoped and other doped ZTO NPs.  相似文献   
9.
《Ceramics International》2021,47(22):31617-31624
The present work aimed to synthesize Zn0.95Ag0.05O (ZnAgO) nanoparticles using rosemary leaf extracts as a green chemistry method. The characterization of Ag-doped ZnO nanoparticles was performed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet–visible spectrophotometry (UV–visible). The XRD, FTIR, and UV–visible spectra confirmed the formation of the presence of hexagonal ZnAgO nanoparticles. FESEM micrograph shows that the nanoparticles have been distributed homogeneously and uniformly. The morphology of ZnAgO nanoparticles is quasi-spherical configuration. Also, the mean particle size is in the range of 22–40 nm. The photocatalytic degradation of methylene blue in the presence of Ag-doped ZnO nanoparticles is nearly 98.5% after exposing 100 min. The ultraviolet lamp was used as the light source for photocatalyst degradation. The disc diffusion method was chosen to study the antibacterial activity of as-synthesized ZnAgO nanoparticles. Antibacterial activity of Zn0.95Ag0.05O nanoparticles against Staphylococcus aureus and Escherichia coli revealed that the as-synthesized ZnAgO nanoparticles were efficient in inhibition of bacterial growth.  相似文献   
10.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号