首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   29篇
  国内免费   34篇
综合类   42篇
化学工业   306篇
金属工艺   2篇
机械仪表   1篇
建筑科学   2篇
能源动力   1篇
轻工业   9篇
石油天然气   43篇
武器工业   27篇
一般工业技术   15篇
冶金工业   1篇
自动化技术   5篇
  2022年   10篇
  2021年   5篇
  2020年   3篇
  2019年   11篇
  2018年   13篇
  2017年   4篇
  2016年   6篇
  2015年   17篇
  2014年   39篇
  2013年   21篇
  2012年   14篇
  2011年   36篇
  2010年   36篇
  2009年   30篇
  2008年   20篇
  2007年   34篇
  2006年   37篇
  2005年   31篇
  2004年   15篇
  2003年   13篇
  2002年   16篇
  2001年   14篇
  2000年   2篇
  1999年   3篇
  1998年   11篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1993年   1篇
  1992年   4篇
排序方式: 共有454条查询结果,搜索用时 19 毫秒
1.
刘洋  焦纬洲  刘有智 《含能材料》2022,30(10):1069-1080
硝基苯类化合物广泛存在于火炸药、石化、染料等行业,在其生产过程中产生大量硝基苯类废水,因其结构稳定、毒性大、可生化性差等特点备受广大科技工作者关注。传统废水处理方法存在传质受限、处理效率低等问题,利用超重力技术强化处理硝基苯类废水成为一种新的颇具潜力的方法。本文综述了超重力强化物理法、还原法、臭氧高级氧化法等处理硝基苯类废水方法研究进展,包括强化传质过程、材料制备、催化降解等方面,并对超重力强化处理硝基苯类废水放大过程中应关注的关键问题以及今后对优化结构、延长液体停留时间的研究方向进行了阐述和展望。  相似文献   
2.
从强化微观混合和传质的角度出发,提出采用新型的撞击流-旋转填料床(IS-RPB)反应器制备纳米氢氧化镁,通过扫描电子显微镜、纳米激光粒度仪和X射线衍射仪等手段对产物进行表征,考察了镁离子初始浓度、反应物浓度比、超重力因子、液体流量及反应温度等因素对氢氧化镁形貌、粒径分布、晶相结构和晶粒尺寸的影响。结果表明:在镁离子初始浓度为0.75 mol/L、反应物浓度比[c(Mg~(2+))∶c(OH~-)]为1∶2、超重力因子为71、液体流量为40 L/h、反应温度为60℃的工艺条件下,制备的氢氧化镁呈六方片状,纯度高,晶粒尺寸为15.9 nm,粒度分布均匀,具有较完整的六方晶系结构。  相似文献   
3.
工业锅炉粉尘成分复杂,颗粒物性差别很大,若采用常规除尘器,无法达到高效脱除。超重力旋转填料床是一种新型的除尘设备,能耗低,除尘效率较高。为探究粉尘颗粒物性对超重力湿法除尘性能的影响,选取吹风气锅炉粉尘和生物质锅炉粉尘两种工业锅炉粉尘,以错流旋转填料床为除尘设备,进行了除尘实验。实验分别测定了粉尘颗粒的粒径、有效密度和润湿性,并采用单因素实验方法,考察了粉尘脱除效率随超重力因子、气量和液量的变化规律。研究结果表明:从粉尘物性角度分析,两种粉尘差异较大,吹风气锅炉粉尘更适用于湿法除尘技术,相应的,在相同的操作条件下,吹风气锅炉粉尘的脱除效率高于生物质锅炉粉尘。但在各自的最适宜操作条件下,两者的脱除效率分别可达91.48%、90.23%。可见,超重力湿法除尘技术受粉尘颗粒特性的影响较小,能够高效脱除工业锅炉粉尘,应用前景广阔。  相似文献   
4.
在20℃下,研究了复配乳化剂及助乳化剂的含量、HLB值、甲醇含量、乳化时间及转速等对甲醇柴油乳液稳定性的影响规律。研究结果表明,随着复配乳化剂及助乳化剂的含量、HLB值和转速的增大,乳液的稳定性呈现先升高后降低的趋势。随着乳化时间的延长,稳定性先升高后趋于基本稳定。随着甲醇含量的增大,乳液的稳定性逐渐降低。实验得到的适宜操作参数:乳化时间为2 min、转速为5×2 800 r·min-1、HLB值为4.5、乳化剂及助乳化剂质量分数均为3%、甲醇质量分数为15%。测得Sauter平均直径D=13μm。  相似文献   
5.
针对DNT生产废水毒性大和难生物降解的特点,采用铁炭微电解法对DNT生产废水进行处理。研究了初始pH值、铁和活性炭质量比、电解质浓度与反应时间对DNT生产废水中硝基化合物及COD去除率的影响。用扫描电镜研究了微电解实验前后铁炭表面的形貌变化。结果表明,在铸铁与活性炭组成的微电解体系中,pH值为1、铁与活性炭的质量比为1.5:1.0、电解质Na_2SO_4质量浓度为300mg/L、反应时间为90min的操作条件下,硝基化合物和COD去除率分别为82.16%和68.43%,BOD_5/CODc,由0.035提高到0.280。反应后的铁炭表面被絮状体及片状晶体覆盖,从而抑制了微电解反应的进行。  相似文献   
6.
为了探索不同填料错流旋转填料床的传质性能,以Na2CO3水溶液吸收空气中硫化氢为实验体系,对装有不锈钢丝网、塑料波纹孔板和θ环填料的错流旋转填料床的气液传质性能进行研究。实验确定的适宜操作条件为:超重力因子7.8,气体流量2 m3/h,液气比20 L/m3,碳酸钠质量浓度12 g/L;在此条件下,3种填料的脱硫率均可达到90%以上。在相同操作条件下,不锈钢丝网填料的脱硫率及气相总体积传质系数大于塑料孔板填料大于θ环填料;错流旋转填料床中,规整填料的气液传质效果优于乱堆填料。文中的研究结果为错流旋转填料床填料的选取及在脱硫方面的应用提供了依据。  相似文献   
7.
以错流旋转填料床为脱硫设备,络合铁-888复合体系为脱硫剂,对模拟气中的H2S进行了脱硫实验研究。考察了气液流量比、超重力因子、气体流量、H2S入口质量浓度对脱硫率的影响,并对比分析了888、络合铁及络合铁-888复合体系的脱硫效果。结果表明,在气、液接触极短时间内,络合铁-888复合体系获得了99%以上的脱硫率,较888及络合铁脱硫剂的脱硫率明显提升,说明脱硫剂复合之后性能得到优化,脱硫能力更强。相比888脱硫剂,络合铁体系更适合于旋转填料床脱硫过程,其受气体流量变化影响较大,适合于脱除低含硫尾气中H2S的场合。  相似文献   
8.
通过一步电沉积法制备CP@Pb电极,并将其用于催化顺丁烯二酸(C4H4O4)电还原反应合成丁二酸(C4H6O4)。利用SEM、TEM、XRD等手段对CP@Pb电极表面结构、物相组成等进行表征,通过CV及CP等方法研究CP@Pb电极在酸性环境中对C4H4O4的电还原催化行为。结果表明,CP@Pb电极对C4H4O4电还原具有良好的催化性能;反应温度为318.15 K时,在0.25 mol/L H2SO4+0.30 mol/L C4H4O4中还原电流密度达到191.3 mA/cm2(-1 V);当还原电流密度为120 mA/cm2时,合成丁二酸的纯度为96%。  相似文献   
9.
针对Fenton法处理废水效果不佳、试剂用量较大、投资成本较高的问题,采用形稳电极Ti/Ir O2-Ta2O5电解与Fenton耦合法处理含酚废水。考察了处理时间、p H值、电压、H2O2和Fe SO4·7H2O投加量对废水降解效果的影响,确定了Ti/Ir O2-Ta2O5电解与Fenton耦合法最佳工艺条件,对比研究了电Fenton法与Fenton法降解含酚废水效果。结果表明:随着处理时间、H2O2和Fe SO4·7H2O投加量的增加,苯酚和COD去除率呈现先增加后趋于平缓的趋势;随着p H值的升高呈现先增加后降低的趋势;在较低电压条件下,可获得良好的处理效果。在最佳工艺条件为p H值3.5、槽电压5.0 V、Fe SO4·7H2O投加量0.15 g/L、H2O2投加量0.3 m L/L、反应时间2 min时,处理初始质量浓度为100 mg/L的含酚废水,COD去除率为40.7%,苯酚去除率为94.2%,高于Fenton法苯酚去除率16.2%。电解与Fenton耦合法在较低电压条件下处理含酚废水,处理效果优于Fenton法,具有良好的应用前景。  相似文献   
10.
邵圣娟  焦纬洲  刘有智 《化工进展》2020,39(12):4798-4811
臭氧高级氧化技术因其绿色高效、适用性广、操作简便等优势,成为当前水处理领域前沿技术之一,但臭氧在传统反应器内普遍存在吸收效果差,臭氧利用率低等缺陷。旋转填料床(RPB)利用高速旋转的填料产生超重力场,将液体剪切破碎为细小的液膜、液丝或液滴,其较高的相界面积、不断更新的界面以及内部流体的强制湍动,加快了臭氧的传质与分解,该技术对于传质受限的臭氧高级氧化过程的强化有着突出的优势。本文简述了超重力强化臭氧氧化过程的原理,介绍了RPB与O3、O3/H2O2、O3/Fenton、O3/PS(过硫酸盐)、催化臭氧氧化等高级氧化法耦合应用处理有机废水的研究现状,并对超重力技术的优势及技术突破进行了述评,总结了超重力应用臭氧高级氧化技术的潜在经济效益和环境效益,提出功能化填料及大型RPB的开发需求,以期为超重力技术在废水处理领域的拓展应用提供理论基础和技术参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号