首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  国内免费   1篇
化学工业   5篇
一般工业技术   10篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   1篇
  2008年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
生物酶的研究对生命现象本质的揭示具有极其重要的意义.通常生物酶反应的研究是在水溶液体系中进行,与其在生物体内所处的水/有机两相界面微环境不相同.通过微流控芯片可获取稳定的水/有机相界面,并利用显微拉曼光谱仪进行微区扫描实现微流控芯片两相酶反应的检测.定量考察了氰根离子在微流控芯片中水相与苯胺相之间扩散行为,并检测了辣根过氧化物酶催化联苯胺与对甲基苯胺的聚合反应.结果表明,在芯片上,非极性分子联苯胺的酶催化反应产物结构组成较极性分子对甲基苯胺更为复杂,而在普通烧杯中的反应则观察不到这个现象.  相似文献   
2.
三价铁盐和二价亚铁盐作为合成MIL-100(Fe)的铁源,对所合成产物的结晶度、形貌以及尺寸具有重要影响。以二价亚铁盐作为原料,利用室温水相合成法可获得八面体形状、高结晶度、高比表面积MIL-100(Fe)纳米颗粒;以三价铁盐作为原料,只能获得尺寸更小、低结晶度的Fe-BTC金属-有机聚合物纳米颗粒。采用X射线衍射仪、扫描电子显微镜、傅里叶红外光谱仪、紫外-可见漫反射光谱仪、紫外-可见分光光度计等对MIL-100(Fe)和Fe-BTC纳米颗粒的晶体结构、形貌、光吸收以及对罗丹明B(RhB)吸附和光催化降解性能进行测试表征。结果表明:Fe2+被弱碱性溶液缓慢氧化成Fe3+,进而形成MIL-100(Fe)的无机次级结构单元μ_3-OFe(Ⅲ)O_6,是合成高结晶度MIL-100(Fe)的关键。以FeCl_3为原料时,由于Fe3+与BTC3-快速反应,不利于形成μ_3-OFe(Ⅲ)O_6次级结构单元,因此产物为Fe-BTC纳米颗粒聚合物。Fe-BTC纳米颗粒粒径更小,且聚集态的纳米颗粒表面具有大孔或介孔结构,更有利于吸附物种以及光降解物种的扩散,因此,Fe-BTC对RhB的吸附和光催化降解性能优于MIL-100(Fe)。  相似文献   
3.
采用硫酸亚铁和均苯三甲酸为原料,在室温条件下以水为溶剂,快速合成高结晶度和高稳定性的MIL-100(Fe)纳米颗粒。利用XRD、SEM、FT-IR和UV-Vis DRS对所合成的MIL-100(Fe)纳米颗粒进行表征。以H_2O_2为助催化剂,在紫外光(或可见光)照射下,MIL-100(Fe)纳米颗粒可将RhB高效光催化降解。循环光催化实验表明,MIL-100(Fe)的光催化性能和晶体结构极其稳定,在废水净化领域具有良好的应用前景。  相似文献   
4.
为了高效、低成本合成光催化性能优异MOFs纳米颗粒,首先将均苯三甲酸与氢氧化钠反应制备均苯三甲酸三钠盐水溶液,之后与亚铁盐(氯化亚铁和醋酸亚铁)水溶液在室温下搅拌24h,合成高结晶度和高稳定性的MIL-100(Fe)纳米颗粒。采用X射线衍射仪、扫描电子显微镜、紫外-可见漫反射光谱仪、紫外-可见分光光度计等对MIL-100(Fe)纳米颗粒的晶体结构、形貌、光吸收和光催化性能进行测试表征,结果表明在紫外光照射下,MIL-100(Fe)/H2O2体系具有优异的光催化降解罗丹明B和甲基橙等有机染料性能。  相似文献   
5.
2,5-二溴对苯二甲酸通过酰化反应得到了2,5-二溴对苯二甲酰氯(Ⅱ)。接着,中间体Ⅱ与4-氨基-2,2,6,6-四甲基哌啶-1-氧自由基(4-NH2-TEMPO)反应获得了侧链嫁接双2,2,6,6-四甲基哌啶氧自由基(TEMPO)的有机单体。然后,该有机单体与四(4-乙炔基苯)甲烷通过Sonogashira偶联反应,合成了高密度TEMPO自由基功能化的CMP-4-(TEMPO)_2共轭微孔聚合物。利用核磁共振谱(NMR)、扫描电子显微镜(SEM)、X射线衍射(XRD)、红外吸收光谱(FTIR)和电子顺磁共振谱(EPR)对所合成单体及CMP-4-(TEMPO)_2进行了表征。结果表明,CMP-4-(TEMPO)_2由微球和中空纳米管组成,具有较高的比表面积(486m~2/g),含有微孔、介孔以及大孔复合孔,孔道含有丰富的TEMPO自由基官能团,可将各种芳香醇和杂原子醇高效、高选择性地氧化成相应的醛和酮。  相似文献   
6.
以硝酸铈铵为金属盐,以1,3,5-三(4-羧基苯基)苯(H_(3)BTB)为有机配体,利用醋酸作为调节剂,成功构筑二维Ce-MOFs纳米片。醋酸对Ce-MOFs的形貌和结晶度具有显著的调节作用。无醋酸调节的Ce-MOFs(称为Ce-BTB-H_(0))由较小的纳米片通过高度交联团聚成微米球,结晶度和比表面积均较低;醋酸调节的Ce-MOFs(称为Ce-BTB-H_(60))为分散的纳米片,纳米片二维尺寸较大,具有更高的结晶度和更大的比表面积。以蓝光LED为光源,氧气为氧化剂,室温条件下,二维Ce-MOFs纳米片催化剂可将不同取代基的苯乙酸脱羧氧化成相应的苯甲醛和苯甲醇。Ce-BTB-H_(60)由于具有更高的结晶度、更大的比表面积以及更分散的纳米片结构,因此具有更优异的光催化性能。  相似文献   
7.
利用溶剂诱导成核法,将HKUST-1前驱液滴加入甲醇溶液,在室温条件下即可快速合成HKUST-1晶体。X-射线衍射结果表明所合成的HKUST-1具有很高的结晶度;扫描电子显微镜显示该HKUST-1具有规则的八面体形貌,尺寸为2~3μm; N2吸附实验表明HKUST-1的BET比表面积高达1 100 m2/g。利用HKUST-1含有大量的未饱和Cu2+,以HKUST-1和2,2,6,6-四甲基哌啶氧自由基(TEMPO)组成的催化体系,研究了HKUST-1/TEMPO对苯甲醇选择性氧化成苯甲醛的反应。催化结果表明,HKUST-1/TEMPO体系在无外加碱添加剂时,在三氟甲苯溶剂中,可将苯甲醇高效、高选择性氧化成苯甲醛。HKUST-1和TEMPO均是催化苯甲醇转化成苯甲醛的催化剂,两者缺一不可。HKUST-1催化前后结构未发生明显变化,催化剂循环利用4次后,对苯甲醇的转化率仍保持在80%以上,是优异的异相催化剂。  相似文献   
8.
模板电解法快速制作玻璃微流控芯片   总被引:1,自引:0,他引:1  
玻璃微流控芯片在许多领域已经得到较广泛的应用,但目前的加工需要繁琐的步骤及昂贵的设备进行图形转移及金属牺牲层开窗口.本文提出一种快速制作金属牺牲层图形窗口以用于玻璃微流控芯片加工的方法.以CO2激光直写加工PET膜模板,微细电解加工玻璃基片上的铬/金牺牲层快速获得窗口,湿法腐蚀及热键合制作玻璃微流控芯片.结果表明该法可在10秒内开窗口,电解加工过程使用的模板厚度、电解液组成及施加的压力与电压对窗口的质量都有显著影响.加工的微通道宽度为145μm,边缘整齐,宽度均匀,相对标准偏差为3.72%,深度μm,底部平整度高,并成功用于氨基酸混合液的芯片毛细管电泳分离.同时使用该方法加工的金微电极阵列,电极宽度为100μm,最小间距可达100μm.  相似文献   
9.
以4,7-二溴-2,1,3-苯并噻二唑为光活性基团,将其与1,3,5-三乙炔苯通过Sonogashira偶联反应合成出苯并噻二唑功能化的CMP-3-BT共轭微孔聚合物.所合成的CMP-3-BT由微球和弯曲丝状纳米带组成,呈现出复杂的分级结构,且具有半导体性质,其禁带宽度为2.24 eV.以蓝光LED灯(425 nm,3 W)为光源,以过氧化氢为辅助剂,在室温和氧气氛围下,CMP-3-BT可将各种取代苯甲硫醚高效、高选择地氧化成相应的甲基苯基亚砜.电子顺磁共振谱表明上述光催化过程产生的1 O2和O·-2是氧化苯甲硫醚的主要活性物种.CMP-3-BT经过6次循环使用后催化性能未发生改变,表明CMP-3-BT是一种结构稳定、性能优异、可循环利用的绿色催化剂.  相似文献   
10.
以2,5-二溴对苯二甲酸为原料,通过酰化反应,获得酰氯中间体,并与4-氨基-2,2,6,6-四甲基哌啶-1-氧自由基(4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-NH2-TEMPO)反应,获得侧链嫁接双TEMPO(2,2,6,6-tetramethylpiperidine-1-oxyl, TEMPO)自由基的有机单体。将该有机单体与四(4-乙炔基苯)甲烷通过Sonogashira偶联反应,合成高密度TEMPO自由基功能化的CMP-4-(TEMPO)2共轭微孔聚合物。利用核磁共振谱(NMR)、扫描电子显微镜(SEM)、粉末X射线衍射(PXRD)、红外吸收光谱(FT-IR)和电子顺磁共振谱(EPR)等表征手段研究了所合成单体及CMP-4-(TEMPO)2的结构特点。CMP-4-(TEMPO)2由微球和中空纳米管组成,具有较高的比表面积(486 m2/g),含有微孔、介孔以及大孔复合孔,孔道含有丰富的TEMPO自由基官能团,可将各种芳香醇和杂原子醇高效、高选择性氧化成相应的醛和酮。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号