首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   21篇
  国内免费   3篇
综合类   7篇
化学工业   86篇
金属工艺   2篇
建筑科学   22篇
矿业工程   1篇
轻工业   12篇
石油天然气   2篇
无线电   1篇
一般工业技术   11篇
冶金工业   1篇
自动化技术   1篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   4篇
  2010年   11篇
  2009年   12篇
  2008年   12篇
  2007年   11篇
  2006年   13篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   6篇
  1999年   4篇
  1998年   3篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
1.
针对引气减水剂在改善混凝土耐久性和工作性的同时,造成混凝土强度降低的问题,研究了改性木质素系高效减水剂GCL1与4种阴离子表面活性剂配伍后对水泥砂浆物理力学性能的影响。表面活性剂与GCL1的质量比为1∶100时,增强了溶液的起泡性能,LAS降低了GCL1的减水率和硬化砂浆的抗压强度和抗渗性能。AS和AES可使GCL1的砂浆减水率从15.4%提高到17.1%,K12可使GCL1的砂浆减水率提高到18.8%,AS和K12降低了砂浆的抗压强度和抗渗性。AES使掺GCL1砂浆的抗渗压力比提高了12%~18%。孔结构测试表明,GCL1与AES配伍后可在砂浆中引入细小、均匀的气泡,增加硬化水泥砂浆中小孔的数量,提高抗压强度和抗渗性能。  相似文献   
2.
为了深入研究木质素磺酸钠在气/液界面上的吸附特性,采用Langmuir-Blodgett(LB)膜天平成功地将木质素磺酸钠Langmuir膜以Y-型膜转移到固体石英玻片上,并采用紫外分光光度仪对其表征。通过研究木质素磺酸钠的π-A曲线得出其LB膜的制备条件:溶液浓度为10 g·L-1,亚相为0.01 mol·L-1 CdCl2,进样量为50μL,划障速率为10mm·min-1。通过添加5%(wt)的脂肪醇与木质素磺酸钠形成复合物,改变了木质素磺酸钠的分子构型,促使更多的木质素磺酸钠分子吸附于气/液界面,形成排列更加有序的Lamgmuir膜,长链脂肪醇对木质素磺酸钠吸附性能具有一定的促进效果,其促进效果随着醇的碳链增长而增强。  相似文献   
3.
不同预处理酶解木质素对丁腈橡胶的补强性能研究   总被引:2,自引:0,他引:2  
采用球磨、喷雾干燥、气流粉碎三种方法分别对酶解木质素(EHL)进行预处理,考察其对丁腈橡胶(NBR)的补强性能影响。结果表明,EHL经气流粉碎预处理后的堆积密度最小(0.3329 g·cm-3),其在NBR基质中的分散粒径最细(约为2.5μm)且最均匀,对NBR的补强效果也最好。硫化胶的综合力学性能方面,气流粉碎预处理方法明显优于球磨法和喷雾干燥法。当EHL的用量为40质量份(phr)时,气流粉碎的NBR/EHL硫化胶的拉伸强度比球磨法、喷雾干燥法分别高出24.44%、61.29%;比空白NBR的拉伸强度提高257%。热重及热氧老化力学性能分析表明,酶解木质素在NBR/EHL共混体系中起到一定的热稳定及抗老化作用。扫描电镜图像显示,气流粉碎的酶解木质素与NBR的相容性比球磨、喷雾干燥法的有较大提高,木质素颗粒与橡胶相间的相互作用力较强。  相似文献   
4.
张丽珠  王欢  李琼  杨东杰 《化工进展》2022,41(7):3731-3744
木质素是一种广泛存在于植物中的天然酚类高分子,具有来源广泛、含氧官能团丰富、含碳量高等优点。对木质素进行修饰改性、复合、热解炭化能够获得性能优异的木质素衍生吸附材料,在废水处理中具有广泛的应用前景。本文对木质素的分子结构特点进行了概述,总结了木质素基吸附剂的种类及其制备方法,详细介绍了木质素基吸附剂的修饰改性方法,如金属离子、含N、O、S官能团表面修饰以及复合改性等,并综述了木质素基吸附剂在染料、药物、重金属废水处理中的应用研究。最后,对木质素衍生吸附材料目前存在的问题以及未来的研究方向进行了总结和展望,如何实现木质素衍生吸附剂的可控制备和规模化生产,提高吸附剂在实际环境中的适用性是未来的主要研究内容。  相似文献   
5.
为了对比氢氧化钠/尿素法(NU法)和硫酸法在测定烟草中木质素含量(质量分数,下同)的差异性,采用NU法和硫酸法测定广东、四川、湖南、云南和贵州5个产区烟梗和烟叶的木质素含量,分析了两种方法在预处理过程的干扰物质去除率及酸解过程木质素含量和结构变化。结果表明:1与硫酸法相比,NU法预处理对干扰物质的去除率更高。2NU法采用稀酸酸解,减少了烟草中木质素的降解;选择在325 nm处测定酸溶木质素(ASL)的紫外吸光度,避免了蛋白质和糠醛对ASL的干扰,提高了烟草木质素测定结果的准确度和重现性。3与硫酸法相比,NU法分离得到的酸不溶木质素(AIL)的氧化程度低、结构变化小,因而更能反映烟草木质素的结构特征。NU法比硫酸法更加适用于烟草木质素的含量测定。  相似文献   
6.
针对目前木质素基Si O2复合纳米颗粒聚集严重及木质素负载量低,难以应用的现状,以碱木质素为主要原料,先通过磷酸化改性制备磷酸化碱木质素,再利用酸析共沉法将1.2份磷酸化碱木质素与1份纳米Si O2(均为质量份)复合制备了木质素-Si O2复合纳米颗粒,并探究复合颗粒对高密度聚乙烯(HDPE)力学性能的影响。FT-IR、XPS、TEM、TG和静态接触角测试结果表明,木质素主要以氢键作用与Si O2结合;与原料二氧化硅相比,复合颗粒的粒径从25 nm增加到40 nm,聚集程度明显减弱;复合纳米颗粒中木质素占47%(质量分数);表面的疏水性增强,有利于复合颗粒在高密度聚乙烯中均匀分散,显著提高了HDPE的拉伸强度。与碱木质素/HDPE复合材料相比,木质素-Si O2复合纳米颗粒/HDPE复合材料的拉伸强度和断裂拉伸率分别提高了48.68%和73.57%。  相似文献   
7.
改性木素磺酸盐泵送剂GCL1-3的制备及性能研究   总被引:4,自引:1,他引:3  
通过研究缓凝高效减水剂GCL1与保水剂、引气剂的配伍性能 ,研制了混凝土泵送剂GCL1- 3。GCL1与保水剂HEC、引气剂复配时 ,改善了水泥净浆的保水性能 ,提高了硬化水泥的早期及后期抗压强度。实验测试了GCL1- 3的水泥净浆流动度、减水率、流动度损失和抗压强度等性能。结果表明 ,当w (水 )∶w(水泥 ) =0 4∶1 0 ,w (GCL1- 3) =0 .5 %时 ,水泥净浆流动度可达2 30mm ,减水率达 18% ,且无离析现象 ;2h内流动度损失仅为 2 4% ,而掺FDN的净浆已经失去流动性 ;w(GCL1- 3) =0 .5 %时 ,水泥净浆硬化 3d、7d、2 8d的抗压强度比分别达 146 %、15 8%与148% ,均高于使用FDN  相似文献   
8.
氨基磺酸-苯酚-甲醛缩合物合成工艺研究   总被引:1,自引:0,他引:1  
分析了氨基磺酸-苯酚-甲醛缩合物(ASP)的合成机理,研究了ASP的合成工艺影响因素,获得了优选的合成工艺,并以凝胶渗透色谱(GPC)、红外光谱分析优选工艺合成的ASP的合适分子量及谱图特征.研究结果表明,合成性能良好的ASP的关键在于形成一定数量的对羟甲基苯酚,并指出了红外谱图中氨基磺酸-苯酚-甲醛缩合物的特征吸收峰.  相似文献   
9.
通过旋转挂片实验研究了浓度、水温、pH、流动条件等因素对CCL2预膜效果和缓蚀性能的影响.结果显示,GCL2对碳钢的缓蚀作用随预膜浓度和运行浓度的升高而增强,预膜浓度200mg/L,运行浓度7.5ng/L时缓蚀率高达90.6%.GCL2在水温为25℃、40℃和60℃时都具有很好的成膜性能和缓蚀作用,需要在冷却水流动的条件下才能形成完整的保护膜.GCL2在弱酸性条件下具有很好的缓蚀性能,当冷却水pH值为6时,25mg/L GCL2的缓蚀率为89.3%.  相似文献   
10.
工业木质素的改性及其作为精细化工产品的研究进展   总被引:16,自引:2,他引:16  
邱学青  楼宏铭  杨东杰  庞煜霞 《精细化工》2005,22(3):161-167,197
随着社会的发展,人类正面临着资源消耗过度、环境污染加剧的困境。积极寻找可再生资源,采用绿色化学工艺、减少环境污染是人类社会可持续发展的必然选择。木质素是自然界第二丰富的生物质可再生资源,工业木质素是制浆造纸的副产品,目前回收利用率不高,大部分随废水排放,既污染环境,又浪费资源。工业木质素的资源化利用具有重大的经济、社会与环境效益。实现工业木质素的资源生态化利用,必须考虑市场对产品的需求、产品的性能价格比、生产工艺的绿色化及发挥工业木质素本身的特性等四方面的因素。技术创新是保证实现工业木质素资源生态化利用最重要的条件。工业木质素通过改性后作为混凝土减水剂、水处理剂、水煤浆分散剂等方面的研究与应用已取得良好进展,是工业木质素资源生态化利用的成功例子。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号