排序方式: 共有35条查询结果,搜索用时 62 毫秒
1.
The decomposition kinetics of glucose was studied in high-temperature liquid water (HTLW) from 180 to 220℃ under a pressure of 10 MPa. It was found the main products from glucose decomposition were 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA). The decomposition kinetics of 5-HMF and stability of LA in HTLW were further investigated. A kinetic model for glucose decomposition was proposed accordingly. In the model, a series of first-order reactions with the consideration of parallel by-reactions were used to illustrate the decomposition of glucose. The decomposition activation energies of glucose, 5-HMF, and LA were evaluated as 118.85, 95.40, and 31.29 kJ·mol^-1, respectively. 相似文献
2.
3.
4.
5.
Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating 总被引:3,自引:0,他引:3
Xinhua Qi Masaru Watanabe Taku M. Aida Richard L. Smith Jr. 《Catalysis communications》2008,9(13):2244-2249
Production of 5-hydroxymethylfurfural (5-HMF) from glucose and fructose catalyzed by TiO2 and ZrO2 under microwave irradiation was studied. For the case of TiO2 used in the fructose reaction, 5-HMF yield was 38.1% for a fructose conversion of 83.6% for 5 min reaction time. A 5-HMF yield of 30.5% for a fructose conversion of 65% was obtained for 5 min reaction time in the presence of ZrO2. The ZrO2 was found to promote isomerization of glucose to fructose, in which the selectivity of fructose from glucose became higher than 60% for about 50% glucose conversion for a reaction time of 1 min. Under the conditions (5 ml of 2 wt% fructose solution, 0.05 g of TiO2, 200 °C, and 3 min), fructose conversion and HMF yields by microwave heating (73% and 35%, respectively) were higher than those by sand bath heating (27% and 12%, respectively). 相似文献
6.
木质纤维素是地球上最丰富的可再生有机碳资源,将其高效转化为化学品或燃料,对缓解全球能源危机和解决环境污染问题具有重要意义。离子液体因对木质纤维素具有独特的溶解性能,近年来作为新型溶剂在生物质转化中获得广泛应用。综述了离子液体用于木质纤维素预处理及化学转化的最新研究进展,包括纤维素溶解、木质纤维素组分分离、纤维素水解制葡萄糖、六碳糖及纤维素催化转化制5-羟甲基糠醛以及碳水化合物的其他转化途径等,同时对基于离子液体平台的生物质转化技术存在的挑战、未来发展趋势及工业化前景进行了展望。 相似文献
7.
New developments in polymer science and technology using combination of ionic liquids and microwave irradiation 总被引:2,自引:0,他引:2
The purpose of this review is to provide appropriate details concerning the application of ionic liquids (IL)s associated with microwave-assisted polymer chemistry. From the viewpoint of microwave chemistry, one of the key significant advantages of ILs is their high polarity, which is variable, depending on the cation and anion and therefore can effectively be tuned to a particular application. Hence, these liquids offer a great potential for the innovative application of microwaves for organic synthesis as well as for polymer science. ILs efficiently absorb microwave energy through an ionic conduction mechanism, and thus are employed as solvents and co-solvents, leading to a very high heating rate and a significantly shortened reaction time. Since an IL-based and microwave-accelerated procedure is efficient and environmentally benign, we believe that this method may have some potential applications in the synthesis of a wide variety of vinyl and non-vinyl polymers. This review describes application of combination of ILs with microwave irradiation as a modern tool for the addition and step-growth polymerization as well as modification of polymers and it was compared with ILs alone and conventional polymerization method. 相似文献
8.
9.
以纤维素水解产物葡萄糖为模型物质,利用小型高压反应釜测定了180℃下13种金属氯化物催化葡萄糖和中间产物5-羟甲基糠醛(5-HMF)分解反应动力学数据,并用一级反应动力学模型对葡萄糖及5-HMF分解反应动力学数据进行了拟合。结果表明,不同的金属氯化物对葡萄糖和5-HMF的分解反应具有不同的催化效果,其中FeCl3、NiCl2和ZnCl2可大大提高葡萄糖分解反应的速率,而FeCl3和CuCl2可大大提高5-HMF分解反应的速率。在碱金属、碱土金属和过渡金属氯化物中,过渡金属氯化物对葡萄糖及5-HMF分解反应的催化效果明显占优。对于第四周期金属元素,随着原子量的增加,葡萄糖分解反应速率常数呈现增加的趋势。金属氯化物对葡萄糖和5-HMF分解反应的催化活性随金属离子pKa值的减小而增强。本文得到了金属氯化物对葡萄糖和5-HMF分解反应影响的规律,为生物质资源的高效利用提供了重要的基础数据。 相似文献
10.
5-羟甲基糠醛脱羧生成乙酰丙酸是生物质资源出发制备乙酰丙酸过程中的关键步骤之一。为了研究低硫酸浓度下水解生物质制备乙酰丙酸工艺的可行性,系统地测定了在压力5 MPa、初始浓度1~9 mg·ml-1、硫酸浓度0.05%~0.4%(质量分数)、温度150~190℃条件下,5-羟甲基糠醛在稀硫酸催化下的降解反应动力学数据,并以主反应生成乙酰丙酸、副反应生成腐黑质的平行反应动力学模型对数据进行了拟合,拟合结果表明,在实验范围内,主、副反应对5-羟甲基糠醛均为一级反应;主反应对H+浓度为1.16级,反应的活化能为78.5 kJ·mol-1;副反应对H+浓度为0.722级,反应的活化能为98.0 kJ·mol-1。研究结果表明,降低温度和提高硫酸浓度有利于提高生成乙酰丙酸的选择性。 相似文献