首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19087篇
  免费   1866篇
  国内免费   778篇
电工技术   114篇
综合类   994篇
化学工业   10749篇
金属工艺   1306篇
机械仪表   128篇
建筑科学   527篇
矿业工程   503篇
能源动力   1054篇
轻工业   1580篇
水利工程   66篇
石油天然气   900篇
武器工业   110篇
无线电   228篇
一般工业技术   2141篇
冶金工业   810篇
原子能技术   338篇
自动化技术   183篇
  2024年   29篇
  2023年   273篇
  2022年   445篇
  2021年   585篇
  2020年   591篇
  2019年   592篇
  2018年   539篇
  2017年   648篇
  2016年   639篇
  2015年   587篇
  2014年   896篇
  2013年   1405篇
  2012年   1225篇
  2011年   1227篇
  2010年   916篇
  2009年   1170篇
  2008年   1000篇
  2007年   1122篇
  2006年   1163篇
  2005年   909篇
  2004年   883篇
  2003年   824篇
  2002年   644篇
  2001年   453篇
  2000年   358篇
  1999年   277篇
  1998年   238篇
  1997年   218篇
  1996年   229篇
  1995年   196篇
  1994年   217篇
  1993年   184篇
  1992年   165篇
  1991年   165篇
  1990年   121篇
  1989年   90篇
  1988年   76篇
  1987年   67篇
  1986年   45篇
  1985年   70篇
  1984年   68篇
  1983年   47篇
  1982年   47篇
  1981年   12篇
  1980年   12篇
  1979年   14篇
  1978年   8篇
  1976年   9篇
  1974年   7篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
Adsorbents and membranes consisting of carbon nanotube (CNT) pores with diameters of molecular dimensions are highly desirable for hydrogen storage and selective, high-flux membrane separation. However, fabrication of such materials with precise pore sizes and monodispersity as well as evaluation of the mechanisms associated to adsorption and molecular transport are challenging. Herein, we grew aluminophsphate zeolites (CoAPO-5, AFI crystal structure) consisting of one-dimensional, monodisperse parallel pores with diameter of ~7 Å, and utilized them as templates to grow singe-walled CNTs (SWNTs) inside the pores. The resulting materials were examined as adsorbents and membranes for hydrogen storage and separation, respectively, using single-gas and real mixture feeds. Detailed mechanistic analysis and fundamental investigation of permeance and adsorption behavior of the resulting CNT-in-zeolite systems via combined adsorption, equilibrium, and kinetic studies were carried out. A superior gravimetric hydrogen uptake of 1.2 wt% at 35 °C and 1 bar was achieved in the case of the SWNTs grown in the cobalt-richer AFI host. Permeability measurements were performed on the respective Co(x)APO@SWNT membranes with the Co-richAPO@SWNT membrane exhibiting the highest permeance for all studied gases as a consequence of larger and more densely packed AFI crystals along with higher number of SWNT-filled pores, assets attributed to the higher Co catalyst content. Notably, the produced composite membranes exhibited gas permeability values that were two orders of magnitude higher than what predicted by the Knudsen mechanism.  相似文献   
2.
《Ceramics International》2022,48(21):31695-31704
In this study, ceramic membranes made of montmorillonite, perlite and iron were used to remove As(III) from water. Membranes prepared with 0.0, 0.5, 1.0, and 1.5 wt% of iron content were used to filtrate As(III) synthetic water and surface water solutions. As(III) adsorption capacity and removal efficiency, and other parameters such as cations and anions content, turbidity, pH, electrical conductivity were used to evaluate the membranes' performance. Results show that the As(III) adsorption/removal capacity of membranes was improved by the addition of iron. Adsorption capacity of 7.5 μg As(III)/g and removal efficiency of 97% can be achieved in membranes with 1.0 wt% of iron filings content for surface water; however, a greater amount of iron in the membrane structure limits the adsorption capacity of As(III). Besides the capacity of ceramic membranes to adsorb/remove As(III), membranes were also effective to remove other ions, turbidity, and electrical conductivity from the surface water. The addition of iron to the ceramic membranes enhanced their capacity to remove such surface water constituents. These results are important from the practical viewpoint showing the potential of ceramic membranes for the removal of metalloids and other water constituents. Langmuir isotherm model best described the adsorption process in ceramic membranes, suggesting that adsorption of As(III) happened on a monolayered surface of the ceramic membrane.  相似文献   
3.
Recovery of hydrogen (H2) from H2-containing gas mixtures has great significance for energy conservation, cost reduction and benefit increase. However, the common separation methods have the ubiquitous problem due to phase equilibrium principle and results in the conflict between H2 concentration and H2 recovery rate in the product gas. Consequently, an innovative conception of hydrate-membrane coupling approach is proposed in this work. In the separation process, hydration and membrane permeation two separation driving forces coexist to achieve the aim of strengthening mass transfer kinetics. H2 and non-H2 components (hydrocarbons) are synchronously and directionally selected by membrane and hydrate to improve different phase compositions. Therefore, the gas in feed side could keep relatively high two separation driving forces (H2 fugacity and hydrocarbons fugacity). The results show that the coupling method could synchronously increase both the concentration and the recovery rate of H2 in the product gas. At the same time, the volume and concentration of the hydrocarbons in hydrate both increases effectively. It indicates that hydrate and membrane separation methods support each other in the separation process. The hydrate-membrane coupling method fundamentally solves the issue of the decreasing driving force resulting from single separation method and phase equilibrium relationship.  相似文献   
4.
In this study, the Bayan Obo rare earth concentrates mixed with Na2CO3 were used for roasting research. The phase change process of each firing stage was analyzed. The kinetic mechanism model of the continuous heating process was calculated. This study aims to recover valuable elements and optimize the production process to provide a certain theoretical basis. Using X-ray diffraction (XRD), Fourier infrared spectroscopy, scanning electron microscopy with energy dispersive spectrometry, the reaction process and the existence of mineral phases were analyzed. The variable temperature XRD and thermogravimetric method were used to calculate the roasting kinetics. The phase transition results show that carbonate-like substances first decompose into fine mineral particles, and CaO, MgO, and SiO2 react to form silicates, causing hardening. Further, REPO4 and NaF can directly generate CeF3 and CeF4 at high temperatures, and a part of CeF4 and NaF forms a solid solution substance Na3CeF7. Rare earth oxides calcined at a high temperature of 750 °C were separated to produce Ce0.6Nd0.4O1.8, Ce4O7, and LaPrO3+x. Then, BaSO4, Na2CO3, and Fe2O3 react to form barium ferrite BaFe12O19; the kinetic calculation results show that during the continuous heating process, the apparent activation energy E reaches the minimum in the entire reaction stage in the temperature range of 440–524 °C, and the reaction order n reaches the maximum, which indicates that the decomposition product REFO significantly impacts the reaction system and reduces the activation energy. The mechanism function is F(α) = [?ln (1?α)]1/3. The reaction order n reaches the minimum in the temperature range of 680–757 °C, and the apparent activation energy E is large. The difficulty of the reaction increases during the final stage. The reaction mechanism function is F(α) = [1?(1?α)1/3]2. Observing the entire reaction stage, the step of controlling the reaction rate changes from random nucleation to three-dimensional diffusion (spherical symmetry).  相似文献   
5.
In the present study, hexagonal boron nitride (h-BN) was synthesized from boric acid and melamine by thermal annealing method in a nitrogen atmosphere. The pure h-BN was used as an efficient sorbent for the uptake of Cd2+ ions from the solution phase. The kinetics and sorption studies of metal ions onto the h-BN were carried out in batch adsorption experiments at different temperature, time, pH, sorbent dosage, and concentration of metal ions. The optimum pH for the removal of the Cd2+ ions was found to be pH 7. The effect of temperature showed that the process of Cd2+ sorption remained endothermic in the range of 298 K–328 K. The Lagergren's first and Ho's second kinetic models were tested to interpret the adsorption kinetic data, however the present data was explained well by Ho's model for kinetics. The thermodynamic perameters ΔG, ΔS and ΔH were determined using the available adsorption data at different temperatures. The physicochemical properties of the synthesized product were also characterized before and after adsorption by different analytical techniques like FT-IR, TGA, XRD and Point of Zero Charge (PZC). The morphology of the surface was analyzed with the help of Scanning Electron Microscopy. The h-BN proved to be an efficient adsorbent for the uptake of the Cd2+ ions from aqueous media.  相似文献   
6.
The strategy for the permanent disposal of high-level nuclear waste in Canada involves sealing it in a copper-coated steel container and burying it in a deep geologic repository. During the early emplacement period, the container could be exposed to warm humid air, which could result in the condensation of nitric acid, produced by the radiolysis of the humid air, on the copper surface. Previous studies have suggested that both nitrate and oxygen reduction will drive copper corrosion, with the nitrate reduction kinetics being dependent on the concentration of soluble copper(I) produced by the anodic dissolution of copper in the reaction with oxygen. This study focused on determining the kinetics of nitrate and oxygen reduction and elucidating the synergistic relationship between the two processes. This was investigated using corrosion potential and polarization measurements in conjunction with scanning electron microscopy and X-ray photoelectron spectroscopy. Oxygen reduction was shown to be the dominant cathodic reaction with the oxidation of copper(I) to copper(II) by nitrate, promoting the catalytic cycle involving the reaction of copper(II) with copper to reproduce copper(I).  相似文献   
7.
In the present study we made an effort to deploy eco-friendly synthesized reduced graphene oxide/Lanthanum Alluminate nanocomposites (RGO-LaAlO3) and Lanthanum Alluminate (LaAlO3) as adsorbents to remove dye from the synthetic media. XRD, SEM, BET surface area and EDX have been used to characterize the above-mentioned adsorbents. The impacts of different factors like adsorbent dosage, the concentration of adsorbate and PH on adsorption were studied. The best fit linear and nonlinear equations for the adsorption isotherms and kinetic models had been examined. The sum of the normalized errors and the coefficient of determination were used to determine the best fit model. The experimental data were more aptly fitted for nonlinear forms of isotherms and kinetic equations. Pseudo-second-order and Freundlich isotherm model fits the equilibrium data satisfactorily. Methyl orange (MO) has been used as model dye pollutant and maximum adsorption capacity was found to be 469.7 and 702.2 mg g?1 for LaAlO3 and RGO-LaAlO3, respectively.  相似文献   
8.
To quantitatively investigate the initial crystallization of zeolite beta synthesized by direct heating, the extent of the reaction was precisely evaluated by X-ray diffraction measurements and Rietveld structural refinement, and a kinetic analysis of crystallization was performed using the Avrami-Erofe'ev equation. The activation energy for crystallization was lower than that for hydrothermal synthesis. Reaction and synthesis time curves revealed that the initial zeolite beta crystallization consisted of three stages. The first was an induction period with nucleation by the generation of building units and the formation of an initial coordinated structure. The second stage was crystal growth by a diffusion-controlled reaction, and the third stage involved slowing down of crystallization by the limitation of dehydrocondensation. These stages could be analyzed by calculation of the rate constant and Avrami exponent for each stage.  相似文献   
9.
GMP synthetase catalyses the conversion of XMP to GMP through a series of reactions that include hydrolysis of Gln to generate ammonia in the glutamine amidotransferase (GATase) domain, activation of XMP to adenyl-XMP intermediate in the ATP pyrophosphatase (ATPPase) domain and reaction of ammonia with the intermediate to generate GMP. The functioning of GMP synthetases entails bidirectional domain crosstalk, which leads to allosteric activation of the GATase domain, synchronization of catalytic events and tunnelling of ammonia. Herein, we have taken recourse to the analysis of structures of GMP synthetases, site-directed mutagenesis and steady-state and transient kinetics on the Plasmodium falciparum enzyme to decipher the molecular basis of catalysis in the ATPPase domain and domain crosstalk. Our results suggest an arrangement at the interdomain interface, of helices with residues that play roles in ATPPase catalysis as well as domain crosstalk enabling the coupling of ATPPase catalysis with GATase activation. Overall, the study enhances our understanding of GMP synthetases, which are drug targets in many infectious pathogens.  相似文献   
10.
In this study, hydrogen (H2) adsorption on sepiolite and bentonite and those of acid treated forms were studied at 77 K using volumetric apparatus up to 100 kPa. Both clay minerals were treated with 100 ml of 0.5, 1.0, 2.0 and 4.0 M H2SO4 solutions at 80 °C for 5 h. Differences in the structures of the sepiolite and bentonite samples before and after the acid treatments were determined by XRD, XRF, TG, DTA and N2 adsorption methods. The level of H2 adsorption of original and acid treated sepiolite samples (1.332–2.252 mmol/g) was higher than those of the bentonite samples (0.341–1.003 mmol/g). The variation in the H2 adsorption capacities during the acid treatment was also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号