首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2144篇
  免费   215篇
  国内免费   96篇
电工技术   167篇
综合类   135篇
化学工业   533篇
金属工艺   63篇
机械仪表   46篇
建筑科学   5篇
矿业工程   23篇
能源动力   350篇
轻工业   22篇
水利工程   3篇
石油天然气   56篇
武器工业   31篇
无线电   434篇
一般工业技术   237篇
冶金工业   11篇
原子能技术   11篇
自动化技术   328篇
  2024年   5篇
  2023年   90篇
  2022年   102篇
  2021年   130篇
  2020年   132篇
  2019年   119篇
  2018年   90篇
  2017年   108篇
  2016年   93篇
  2015年   96篇
  2014年   129篇
  2013年   152篇
  2012年   154篇
  2011年   154篇
  2010年   125篇
  2009年   136篇
  2008年   103篇
  2007年   103篇
  2006年   85篇
  2005年   82篇
  2004年   75篇
  2003年   44篇
  2002年   35篇
  2001年   26篇
  2000年   23篇
  1999年   16篇
  1998年   13篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1951年   1篇
排序方式: 共有2455条查询结果,搜索用时 31 毫秒
1.
The H2 storage properties of isoreticular metal-organic framework materials (IRMOFs), MOF-5 and IRMOF-10, impregnated with different numbers and types of heterogeneous C48B12 molecules were investigated using density functional theory and grand canonical Monte Carlo (GCMC) calculations. The excess hydrogen adsorption isotherms of IRMOFs at 77 K within 20 bar indicate that suitable number and type of C48B12 molecules play a crucial role in improving the H2 storage properties of IRMOFs. Among the studied pure and nC48B12 (n = 1, 2, 4, 8) in Ci symmetry impregnating into MOF-5, at 77 K under 6 bar, MOF-5-4C48B12 with a 3.5 wt% and 29.9 g/L hydrogen storage density, and at 77 K under 12 bar, the pure MOF-5 with a 4.9 wt% and 31.0 g/L hydrogen storage density has the best hydrogen storage properties. Whereas, among the studied pure and nC48B12 (n = 1, 2, 4, 8) in S6 symmetry impregnating into IRMOF-10, IRMOF-10-8C48B12 always shows the best hydrogen storage properties among the pure and C48B12-impregnated IRMOF-10 at 77 K within 20 bar. IRMOF-10-8C48B12 has a 6.0 wt% and 34.6 g/L hydrogen storage density at 77 K under 6 bar, and has a 7.1 wt% and 41.4 g/L hydrogen storage density at 77 K under 12 bar. The confinement effect of IRMOFs on C48B12 molecules, and steric hindrance effect of C48B12 molecules on IRMOFs mainly affects the H2 uptake capacity by comparing the absolute H2 molecules in individual IRMOFs units, C48B12 molecules, and IRMOFs-nC48B12 compounds. The absolute hydrogen adsorption profiles show that eight C48B12 molecules impregnating into MOF-5 can exert obvious steric effects for H2 adsorption. The saturated gravimetric and volumetric H2 densities of IRMOF-10-8C48B12 higher than those of MOF-5-8C48B12 due to with larger free volume.  相似文献   
2.
Hydrogen is being considered a ‘fuel of the future,’ a viable alternative to fossil fuels in fuel cell vehicles. Using Density Functional Theory simulations, reversible, onboard hydrogen storage in Sc-decorated triazine-based graphitic carbon nitride (g-C3N4) has been explored. Sc atom binds strongly on the g-C3N4 structure with a binding energy of ?7.13 eV. Each Sc atom can reversibly bind 7 molecules of hydrogen, giving a net gravimetric storage capacity of 8.55 wt%, an average binding energy of ?0.394 eV per H2, and a corresponding desorption temperature of 458.28 K, fulfilling the criteria prescribed by the US Department of Energy. The issue of transition metal clustering has been investigated by computing the diffusion energy barrier (2.79 eV), which may be large enough to hinder the clustering tendencies. The structural integrity of Sc-g-C3N4 has been verified through ab-initio Molecular Dynamics simulations. The interaction mechanism of Sc over g-C3N4 and H2 over Sc-g-C3N4 has been explored using density of states and charge transfer analysis. A flow of charge from valence 3d orbitals of Sc towards vacant orbitals of g-C3N4 during the binding of Sc over g-C3N4 is observed. The binding of H2 on Sc-g-C3N4 may be via Kubas type of interactions which is stronger than physisorption due to net charge gain by H 1s orbital from Sc 3d orbital. Our systematic investigations indicate that Sc-decorated g-C3N4 may be a high-performance material for reversible hydrogen storage applications.  相似文献   
3.
《Ceramics International》2022,48(10):14349-14359
The influence of heat-treatment temperatures (700 °C, 900°C, 1200 °C) on the phase, physical properties, crystallization rate, and in vitro properties of the solution combustion synthesized silicon-doped calcium phosphates (CaPs) were investigated. The thermodynamic aspects (enthalpy, entropy, and free energy) of the synthesis process and the crystallographic properties of the final samples were first predicted and then confirmed using density functional theory (DFT). Results demonstrated that the crystallization rate was controlled by the fuel(s) type (glycine, citric acid, and urea) and the amounts of Si4+ ions (0, 0.1, 0.4 mol). The highest calculated crystallization rate values of the un-doped, 0.1, and 0.4 mol Si-doped samples were 64%, 22%, 38%, respectively. The obtained results from the DFT simulation revealed that crystal growth in the direction of c-axis of hydroxyapatite (HAp) structure could change the stability of (001) surface of (HAp). Also, the computational data confirmed the adsorption of Si–OH groups on the (001) surface of HAp during the SCS process with an adsorption energy of 1.53 eV. AFM results in line with DFT simulation showed that the observed change in the surface roughness of Si-doped CaPs from 2 to 8 nm could be related to the doping of Si4+ ions onto the surface of CaPs. Besides, the theoretical and experimental investigation showed that crystal growth and doping of Si4+ ions could decrease the activation energy of oxygen reduction reaction (ORR). Furthermore, the results showed that the crystallized HAp structure could have great potential to efficiently reduce oxidative stress in human body.  相似文献   
4.
Photocatalytic water splitting has become a promising technology to solve environmental pollution and energy shortage. Exploring stable and efficient photocatalysts are highly desired. Herein, we propose novel low-dimensional InSbS3 semiconductors with good stability based on density functional theory. Such InSbS3 structures could be obtained from their bulk crystal by suitable exfoliation methods. Our calculations indicate that two-dimensional (2D) and one-dimensional (1D) InSbS3 nanostructures have moderate band gaps (2.54 and 1.97 eV, respectively) and suitable band edge alignments, which represents sufficient redox capacity for photocatalytic water splitting. 2D InSbS3 monolayer possesses oxygen evolution reaction (OER) activity and 1D InSbS3 single-nanochain possesses hydrogen evolution reaction (HER) activity under acidic conditions. Interestingly, two edge electron states can be introduced when the dimension of InSbS3 is reduced from 2D to 1D and the new electron states can exist in arbitrary-width nanoribbons, which can effectively promote the process of HER. Moreover, InSbS3 monolayer and single-nanochain also exhibit large solar-to-hydrogen efficiency, high carrier mobility, and excellent optical absorption properties, which can facilitate the process of photocatalytic reactions. Our findings can stimulate the synthesis and applications of low-dimensional InSbS3 semiconductors for overall water splitting.  相似文献   
5.
6.
The barriers for the encapsulation and decapsulation of hydrogen ions (cationic hydrogen and hydride), atom, and molecule through silicon carbide nanotube are thoroughly studied. DFT method is selected to measure the kinetic barriers for the passage of hydrogen atom, ions and molecule through nanotube via scanning potential energy surface. The kinetic barriers for the passage (encapsulation and decapsulation) of hydrogen are very important to understand the mechanism of hydrogen storage and release. The barriers for the permeation of H, H+ and H? across SiC nanosheet are lower compared to hydrogen molecule (H2). The exohedral and endohedral adsorption of hydrogen ions (cation and anion), atom and exohedral hydrogen molecule on silicon carbide are exothermic in nature. Whereas the encapsulation of hydrogen molecule in silicon carbide is endothermic. Electronic properties are analyzed through measurement of energy gap between highest occupied and lowest unoccupied molecular orbitals gap (GH-L) and the density of state (DOS) spectra. The GH-L analysis reveals that endohedral complexes have more pronounced effect on electronic properties compared to exohedral complexes. The SiC nanotube has highly favorable properties for storage and release of hydrogen ions, and atom.  相似文献   
7.
Electrochemical CO2 reduction reaction (CO2RR) is an efficient way in the utilization of CO2. In this work, single transition-metal (TM) atom (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) anchored on two-dimensional (2D) Ti2CN2 are designed for CO2RR using density-functional-theory (DFT) calculation. We show that Ti2CN2 serves as an excellent substrate to support single atom catalysts (SACs), compared to Ti2CO2 and Ti2CF2. We find that the Sc, Ti and V supported on Ti2CN2 show high catalytic activities to produce CO with a low overpotential of 0.37, 0.27, and 0.23 eV, respectively. Differently, the Mn and Fe on Ti2CN2 are catalytically active for the production of HCOOH with a low overpotential of 0.32 and 0.43 eV, respectively. We further show that the negatively charged TM-Ti2CN2 can capture and activate CO2 more effectively, and the catalytic activity and selectivity can be significantly tuned by injecting extra electrons.  相似文献   
8.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
9.
The adsorption of the hydrogen molecule on the pure porous graphene nanosheet (P-G) or the one decorated with Be atom (Be-G) was investigated by the first-principle DFT calculations. The Be atom was adsorbed on the P-G with a binding energy of ?1.287 eV to successfully establish the reasonable Be-G. The P-G was a poor substrate to interact weakly with the H2, whereas the Be-G showed a high affinity to the adsorbed H2 with an enhanced adsorption energy and transferred electrons of ?0.741 eV and 0.11 e, respectively. A molecular dynamics simulation showed that the H2 could also be adsorbed on the Be-G at room temperature with a reasonable adsorption energy of ?0.707 eV. The interaction between the adsorbed H2 and the Be-G was further enhanced with the external electrical fields. The applied electrical field of ?0.4 V/Å was found to be the most effective to enhance the adsorption of H2 on the Be-G with the modified adsorption energy and the improved transferred electrons being ?0.708 eV and 0.17 e, respectively. Our study shows that the Be-G is a promising substrate to interact strongly with the H2 and could be applied as a high-performance hydrogen gas sensor, especially under the external electrical field.  相似文献   
10.
Developing efficient catalysis for dinitrogen (N2) fixation is a very important and challenging issue in chemistry. Herein, by means of density functional theory (DFT) computations, we reported that the potential of single-atom Rhenium (Re) supported on the graphyne (Re-GY) for activating N2 and reducing it into ammonia (NH3). It is found that the adsorption energies of N2 on Re-GY for end-on/side-on configuration are −1.05/-0.56 eV, together with the N–N bond length are stretched to 1.14/1.21 Å, respectively. The hydrazine intermediate is difficult to release with adsorption energies of −1.71/1.49 eV on Re-GY for different pathways, which ensures it is sequentially hydrogenated and eventually form NH3. All the mechanisms considered are energetically favorable and the most favorable pathway is the mixed mechanism. It is worth noting that there are relatively rare researches on Re-based catalysts for N2 fixation, our findings provide a new option for the design and synthesis of catalysts for N2 reduction reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号