首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
电工技术   1篇
化学工业   2篇
矿业工程   1篇
能源动力   3篇
无线电   2篇
一般工业技术   5篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
为研究非晶态合金Co-Fe-P体系的成键方式及磁性,在较高的量子化学水平下,利用密度泛函理论,以团簇Co3FeP为局域模型展开研究,结果发现:团簇的自旋多重度和几何形态均会影响其成键杂化方式和磁性;团簇Co3FeP中存在pd2、s2p2d3、p2d、p3d、p3、pd3杂化,其中Co-Fe键主要由Co3d和Fe3d、Co4p和Fe4p形成的d2和p2杂化组成;Co-P键主要是Co3d和P3p形成的pd杂化;Fe-P键主要是Fe3d和P3p形成的pd杂化。Co原子和Fe原子在提供磁性时,相互制衡。综合来看,d轨道对团簇Co3FeP的成键方式和磁性有着重要影响。  相似文献   
2.
Transition metal phosphides have emerged as alternative electrocatalysts for hydrogen evolution reaction (HER) due to their high activity and low cost compared to the conventional HER electrocatalysts such as Pt. However, the dependency of HER activity on different crystal phases is not well-understood. Here, we synthesized iron phosphide nanoparticles with two distinct phases via chemical transformation from iron metal to iron phosphides. During the development of iron phosphide phases by varying the synthesis conditions such as reaction temperature and time, the HER activities of the nanoparticle were examined. The HER activities of the iron phosphide nanoparticles were found to be phase-dependent.  相似文献   
3.
In recent years, the composite materials based on polyanionic frameworks as secondary sodium ion battery electrode material have been developed in large-scale energy storage applications due to its safety and stability. The Na2FeP2O7/C (theoretical capacity 97 mA·h·g-1) is recognized as optimum Na-storage cathode materials with a trade-off between electrode performance and cost. In the present work, The Na2FeP2O7/C and boron-doped Na2FeP2-BO7/C composites were synthesized via a novel method of liquid phase combined with high temperature solid phase. The non-metallic element B doping not only had positive influence on the crystal structure stability, Na+ diffusion and electrical conductivity of Na2FeP2O7/C, but also contributed to the high-value recycling of B element in waste borax. The structure and electrochemical properties of the cathode material were investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM), The X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and charge/discharge cycling. The results showed that different amounts of boron doping had positive effects on the structure and electrochemical properties of the material. The initial charge/discharge performances of born doped materials were improved in comparison to the bare Na2FeP2O7/C. The cycle performance of the Na2FeP1.95B0.05O7/C showed an initial reversible capacity of 74.8 mA·h·g-1 and the high capacity retention of 91.8% after 100 cycles at 1.0 C, while the initial reversible capacity of the bare Na2FeP2O7/C was only 66.2 mA·h·g-1. The improvement of apparent Na+ diffusion and electrical conductivity due to B doping were verified by the EIS test and CVs at various scan rate. The experimental results from present work is useful for opening new insight into the contrivance and creation of applicable sodium polyanionic cathode materials for high-performance.  相似文献   
4.
5.
Transition metal phosphides (TMPs) possess high theoretical sodium storage capacities, but suffer from poor rate performance, due to their intrinsic low conductivity and large volume expansion upon sodiation/desodiation. Compositing TMPs with carbon materials or downsizing their feature size are recognized as efficient approaches to address the above issues. Nevertheless the surface‐controlled capacitive behavior is generally dominated, which inevitably compromises the charge/discharge platform, and decreases the operational potential window in full‐cell constructions. In this work, a novel architecture (FeP@OCF) with FeP quantum dots confined in P‐doped 3D octahedral carbon framework/carbon nanotube is rationally designed. Such structure enables a simultaneous enhancement on the diffusion‐controlled capacity in the platform region (2.3 folds), and the surface‐controlled capacity in the slope region (2.9 folds) as compared to that of pure FeP. As a result, an excellent reversible capacity (674 mAh g?1@ 0.1 A g?1) and a record high‐rate performance (262 mAh g?1 @ 20 A g?1) are achieved. A full‐cell FeP@OCF// Na3V2(PO4)3 is also constructed showing an outstandingly high energy density of 185 Wh kg?1 (based on the total mass of active materials in both electrodes), which outperforms the state‐of‐the art TMP‐based sodium‐ion battery full cells.  相似文献   
6.
采用固相球磨法制备了Li2FeP2O7/C正极材料,研究了烧结温度、碳包覆含量以及碳源对其结构、形貌以及电化学性能的影响。结果表明: 高温固相烧结合成样品的适宜温度为680 ℃,以柠檬酸为碳源、碳包覆量为5%时,合成的Li2FeP2O7/C晶型完整,晶粒较小且均匀,0.1C倍率下的放电比容量可达102.6 mAh/g,0.5C倍率下的初次放电比容量可达83.4 mAh/g,循环30次后放电比容量为80.7 mAh/g,展现了较好的循环性能以及倍率性能。  相似文献   
7.
以Fe(NO3)3?9H2O、Ni(NO3)2?6H2O、硫粉或NaH2PO2?H2O为原料,通过两步法合成了FeS2/NiS2、FeP/Ni2P复合材料,通过XRD、SEM和TEM对材料的结构和形貌进行了表征,研究了其析氧催化性能。结果表明,上述催化剂均具有很好的催化性能。在电流密度为10 mA/cm2时,FeP/Ni2P需要较小的过电位(300 mV),表现出比FeS2/NiS2(300 mV)更好的催化活性。FeP/Ni2P催化剂相应的塔菲尔斜率值(48 mV/dec)也比FeS2/NiS2 (71 mV/dec)的小,表示在析氧反应中FeP/Ni2P催化剂具有更好的催化动力学性能。  相似文献   
8.
Abstract: In this study we dealt with the characterisation of an aluminium‐clad steel material compound and the influence of the manufacturing process on its fatigue behaviour. As components of the Al6016‐T4/FeP06 material compound are manufactured predominantly by rolling and deep drawing, the influence of the plastic deformation during manufacturing on the fatigue behaviour must be investigated. Particularly, the cyclic hardening behaviour of FeP06 has a marked effect on the fatigue life of the aluminium–steel compound. Simulation models for fatigue life estimation of this material compound must therefore consider the influence of the plastic deformation which occurs, e.g. during deep drawing, on the fatigue behaviour. This study focused on the technological influences of the rolling process on the fatigue behaviour of an AA6016‐T4/FeP06 compound. The influence of the load sequence on the S/N‐curve of FeP06 was also studied.  相似文献   
9.
Carbon‐based materials have been widely used in heterogeneous catalysis because of their advantages of high surface area, thermal stability, and chemical inertness. However, their role in the catalysis is not fully understood although most studies conclude that the coupling between the carbon support and catalyst could reduce the charge transfer resistance and improve the kinetics of catalytic reactions such as water splitting. In this study, a carbon‐modified FeP2 electrocatalyst with a one‐step strategy is synthesized. The tensile strain is introduced in situ in the ab crystal plane of the FeP2 catalyst. This leads to charge redistribution between H and O atoms in the OH bonds and enhances the adsorption of reaction intermediates. In the water oxidation process, this results in a decrease in the energy barrier for the rate‐determining step, specifically, the chemical step of *OH adsorption preceded by one‐electron transfer. Benefiting from the optimized adsorption energy, the strained catalysts exhibit excellent oxygen evolution reaction (OER) activity with a low overpotential in addition to their increased stability. This study provides a new strategy for the introducing of strains in functional materials and provides new insights into the influence of carbon modification on OER activity.  相似文献   
10.
以三价铁制备LiFePO4/C复合材料及其电化学性能   总被引:1,自引:0,他引:1  
王冠  江志裕 《电池》2007,37(3):195-198
以Fe203、FeP04为铁源,分别采用蔗糖和活性铁粉为还原剂,设计了4条反应路线,利用热还原法制备了LiFePO4/C复合材料.用XRD和SEM对晶体结构及表面形貌进行了研究,用循环伏安法、充放电测试和交流阻抗法研究了电化学性能.制备的LiFeP04/C复合材料具有较好的电化学性能,以FePO4和活性铁粉为原料制得的复合材料性能最佳,以0.2 C充放电,首次放电比容量为151 mAh/g,第200次循环的放电比容量仍能保持99.5%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号