首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   5篇
综合类   1篇
化学工业   124篇
金属工艺   1篇
机械仪表   1篇
建筑科学   4篇
矿业工程   12篇
能源动力   5篇
水利工程   2篇
石油天然气   1篇
一般工业技术   62篇
原子能技术   1篇
  2023年   12篇
  2022年   22篇
  2021年   16篇
  2020年   5篇
  2019年   1篇
  2018年   14篇
  2017年   37篇
  2016年   25篇
  2015年   7篇
  2014年   16篇
  2013年   7篇
  2012年   5篇
  2011年   11篇
  2010年   7篇
  2009年   4篇
  2008年   7篇
  2007年   8篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
1.
Fly ash and oil contaminated sand are considered as the two waste materials that may affect environment. This paper investigated the suitability of producing geopolymer cement mortar using oil contaminated sand. A comparison between physical and mechanical properties of mortar produced using geopolymer and Ordinary Portland Cement (OPC), in terms of porosity, hydration and compressive strength, was conducted. The results showed that heat curing can increase the compressive strength of geopolymer mortar up to 54% compared to ambient curing situation. The geopolymer mortar with 1% of light crude oil contamination yielded a 20% higher compressive strength than OPC mortar containing sand with a saturated surface dry condition. Furthermore, the formation of efflorescence decreased as the level of oil contamination decreased. Moreover, the heat curing method increased the kinetic energy and degree of reaction for geopolymer cement mortar, which cause an increment of the density of the pore system and improving the mechanical properties of the resulting composites. From the results of this study, it was demonstrated that geopolymer mortar has the potential of utilizing oil contaminated sand, and reducing its environmental impacts.  相似文献   
2.
《Ceramics International》2021,47(22):31713-31723
Continuous carbon-fibre-reinforced Cs-geopolymer composite (Cf/CsGP) were prepared, and its in-situ conversion was investigated during high-temperature treatments. The effect of treatment temperature on the thermal evolution process and mechanical properties of the resulting products were systematically evaluated. The results indicated that the crystallization temperature of Cf/CsGP composite was considerably delayed because the amorphous structure of carbon fibres was not conducive as a nucleation substrate for pollucite derived from the CsGP matrix. Moreover, the integrity of the corresponding resulting products derived from the Cf/CsGP composite were damaged due to thermal shrinkage that occurred during the high-temperature treatment process. When treatment temperature was ≤1200oC, the mechanical properties of the corresponding products exhibited an upward trend, which was ascribed to the improvement of the densification degree of the resulting composite and well interface-bonding state between carbon fibres and pollucite. However, the mechanical properties of the resulting composites decreased with the treatment temperature continued increased from 1200 to 1400oC. This phenomenon was attributed to the impairment of fibre properties caused by interfacial reactions.  相似文献   
3.
In this study, SiC whiskers (SCWS) reinforced geopolymer composites (SCWS/KGP) and their ceramic products (SCWS/leucite) were prepared, and effects of SiC whiskers contents on the microstructure and flexural strength of the SCWS/KGP and SCWS/leucite composites were investigated. The results show that the whisker addition has little influence on both phase composition and thermal shrinkage of the KGP composites, but a suitable content of whisker will result in the improved flexural strength, and when the SCWS content is 2 wt%, flexural strength of the SCWS/KGP composite is enhanced by 95% compared with the neat geopolymer. The flexural strength of the composites can be further enhanced significantly after the composites being treated at 1100 °C and 1200 °C and flexural strength of the composite with SCWS content of 2 wt% was 107% and 125% higher than the untreated counterpart, respectively. The increase in flexural strength of the composites should be attributed to the strong leucite formation, whisker debonding and pulling out from matrix during the fracturing process based on the good interfacial bonding state between whisker and leucite matrix.  相似文献   
4.
《Ceramics International》2022,48(18):26248-26257
The present study mainly studies the effect of polydimethylsiloxane (PDMS) content on the waterproofing and mechanical properties of geopolymer composites. Firstly, hydrophobic modified geopolymer composites (HM-GC) were prepared by adding PDMS during the mixing process. Secondly, the surface wettability characteristics, water absorption, uniaxial compressive and tensile properties of HM-GC were investigated. The effect of PDMS content on the waterproofing and mechanical properties was further discussed. Finally, considering the waterproofing and mechanical properties, the optimal PDMS content was proposed. The results showed that with increasing PDMS content, the contact angle of geopolymer composites rapidly increase at first and then stabilizes. The geopolymer composites with 4% and 5% PDMS content exhibit overhydrophobic surface wettability. In addition, the water absorption gradually decreases with increasing PDMS content, indicating an improvement in the waterproofing ability. The incorporation of PDMS can enhance the compressive properties of geopolymer composites while reducing the tensile properties. Comprehensively considering the waterproofing and mechanical properties, it is reasonable to select 4% as the optimal PDMS content used in practical marine engineering.  相似文献   
5.
Metakaolin was incrementally replaced (33.3%, 50% and 66.6%) by red ceramic waste in geopolymer formulation to study the effect on geopolymerisation and its resultant properties. The geopolymer binders composed of two calcined aluminosilicates (viz. Metakaolin and Red ceramic waste), NaOH and sodium silicate. In the experimental compositions, metakaolin was replaced gradually up to 66.6% in the clay fraction, the Si/Al increased from 3.36 to 5.16 and Na/Al increased from 0.93 to 1.38. The FTIR spectroscopic studies of geopolymer pastes along with XRD analysis indicated that the red ceramic waste partly reacts with alkali and takes part in geopolymer formation. Replacement of 33.3% metakaolin by the red ceramic waste in geopolymer binder did not reduce the compressive strength with respect to the pure metakaolin geopolymer here. Additional replacement resulted in a drastic decrease in the compressive strength of the geopolymer binder. However, the compressive strength of geopolymer mortars revealed interesting synergy between the amount of binder and particle packing in the mortar. Despite having a lower amount of binder phase, mortars with 33% and 50% red ceramic waste exhibited maximum compressive strength values. This has been attributed to improved particle packing through incorporation of red ceramic waste particles.  相似文献   
6.
《Ceramics International》2021,47(21):29949-29959
High carbon footprint of cement production is the major drawback of plain cement concrete resulting in environmental pollution. Geopolymer composites paste can be effectively used as an alternative to Portland cement in the construction industry for a sustainable environment. The demand for high-performance composites and sustainable construction is increasing day by day. Therefore, the present experimental program has endeavored to investigate the mechanical performance of basalt fiber-reinforced fly ash-based geopolymer pastes with various contents of nano CaCO3. The content of basalt fibers was fixed at 2% by weight for all specimens while the studied contents of nano CaCO3 were 0%, 1%, 2%, and 3%, respectively. The compressive strength, compressive stress-strain response, flexural strength, bending stress-strain response, elastic modulus, toughness modulus, toughness indices, fracture toughness, impact strength, hardness, and microstructural analysis of all four geopolymer composite pastes with varying contents of nano CaCO3 using scanning electron microscopy (SEM) were evaluated. The results revealed that the use of 3% nano CaCO3 in basalt fiber-reinforced geopolymer paste presented the highest values of compressive strength and hardness while the use of 2% nano CaCO3 showed the highest values of flexural strength, impact strength, and fracture toughness of composite paste. The SEM results indicated that the addition of nano CaCO3 improved the microstructure and provided a denser geopolymer paste by refining the interfacial zones and accelerating the geopolymerization reaction.  相似文献   
7.
This paper presents the material design and fresh properties of geopolymer mortar developed for 3D concrete printing application. Unlike traditional casting, in 3D printing, extruded materials are deposited layer-by-layer to build complex architectural and structural components without the need of any formwork and human intervention. Extrudability, shape retention, buildability and thixotropic open time (TOT) are identified as critical early-age properties to characterize the 3D printable geopolymer material. Five different mix designs of geopolymer are tested in a systematic experimental approach to obtain a best printable mix and later it is used to print a 60-centimeter-tall freeform structure using a concrete gantry printer to validate the formulation.  相似文献   
8.
This work investigates emulsion templating to synthesize hexadecane oil/geopolymer composites. In a system with hexadecane as the internal (dispersed) phase and an alkali activated continuous phase without added surfactant, adding aluminosilicate clay particles does not increase resistance against creaming or coalescence, while adding a surfactant (L35 or CTAB) stabilizes the solid-liquid interface. Infrared studies and rheological studies of the associated geopolymerization determined that the presence of the organic phase or surfactant has no significant effect on the geopolymerization kinetics, as determined by the change in time of the Si-O-T IR stretching frequency and the rheological moduli involved during the process. The stabilization of the organic template is reminiscent of Pickering emulsion even though we employ a much greater amount of inorganic material for geopolymer formation. Although the addition of surfactant has a significant effect on the behavior of the paste, the percolation of the network remains unmodified, highlighting the fact that the phenomenon is not dependent on viscosity. Finally, rheological measurements were used to obtain the mass fractal dimension of the as-made gel network, which is able to differentiate the interfacial effect between surfactant molecules with a slightly denser interphase when a cationic surfactant is used.  相似文献   
9.
《Ceramics International》2020,46(11):18469-18477
The solid state reaction between kaolin and Li2CO3 with a 1:1 M composition has been studied in the temperature range 380°C-550 °C. The role played by Li2CO3 (basic medium) in the thermal transformation of the kaolin has been investigated by X-Ray diffraction, FESEM, TEM, MAS-NMR and XPS techniques. For the first time, a nanostructured high density β- Eucryptite (<10 nm) has been obtained by Spark Plasma Sintering (SPS) at 550 °C in high vacuum. The atmosphere used in sintering treatments has a determinant role in lithium migration and crystallization of β- Eucryptite. In the case of low vacuum treatments, an amorphous LiAlSiO4 geopolymer type material was obtained. Due to exclusive properties and performances of β- Eucryptite based materials, the results reported in the present investigation open new perspectives for new nanostructured and amorphous functional materials with null thermal expansion, ionic conduction and remarkable mechanical properties.  相似文献   
10.
《Ceramics International》2021,47(19):27361-27371
Fly ash-based geopolymer foam mortar (GFM) was used as an adsorbent material to methylene blue (MB) and also the dye removal material using the photocatalytic mechanism. The GFM, containing 50 wt% river sand aggregate, was prepared to have approximately 46% open porosity, pore size distribution between 0.01 and 3.5 mm, and water permeability of 0.2 cm/s. The variation of adsorption efficiency and adsorption capacity with the contact time of the GFM was first evaluated using various GFM dosages (10, 20, 50, 80, and 100 g/L). The adsorption efficiency at equilibrium (AEe) was found to linearly increase, while adsorption capacity (qae) exponentially decayed, with an increase of loading dosages. The photocatalytic removal efficiency of ~100% was obtained with 50, 80, and 100 g/L GFM loading dosages, with a shorter time at higher dosages. The GFM could be reused, without regeneration, for 5 cycles. The AEe and qae for each reused cycle did not noticeably change suggesting the reusability. The photocatalytic removal efficiency, however, was found to decrease with an increase of the reused cycle. After the 5th cycle, the highest removal efficiency was reduced to ~70%. The attempts to treat the GFMs with hydrochloric (HCl) and phosphoric (H3PO4) acid to reduce the excess alkaline did not give satisfactory results as expected. The photocatalytic removal efficiency had subsided after the treatment with both acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号