首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16830篇
  免费   1776篇
  国内免费   855篇
电工技术   274篇
综合类   823篇
化学工业   2892篇
金属工艺   6612篇
机械仪表   804篇
建筑科学   401篇
矿业工程   453篇
能源动力   562篇
轻工业   317篇
水利工程   12篇
石油天然气   264篇
武器工业   256篇
无线电   520篇
一般工业技术   2983篇
冶金工业   2084篇
原子能技术   79篇
自动化技术   125篇
  2024年   43篇
  2023年   277篇
  2022年   504篇
  2021年   595篇
  2020年   647篇
  2019年   488篇
  2018年   463篇
  2017年   637篇
  2016年   515篇
  2015年   583篇
  2014年   962篇
  2013年   958篇
  2012年   1171篇
  2011年   1499篇
  2010年   1018篇
  2009年   1080篇
  2008年   910篇
  2007年   1162篇
  2006年   1173篇
  2005年   887篇
  2004年   756篇
  2003年   681篇
  2002年   551篇
  2001年   464篇
  2000年   355篇
  1999年   230篇
  1998年   155篇
  1997年   132篇
  1996年   104篇
  1995年   84篇
  1994年   60篇
  1993年   55篇
  1992年   61篇
  1991年   53篇
  1990年   37篇
  1989年   46篇
  1988年   15篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   7篇
  1981年   8篇
  1980年   2篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Fiber production from inorganic industrial solid wastes is an effective waste management strategy. Because of cost considerations, most enterprises generally use local solid wastes as raw materials to produce fibers. In this study, we explored the feasibility of producing fibers using fly ash and magnesium slag. The results show that the melting temperature of the blends composed of fly ash, magnesium slag, and a small amount of calcined dolomite first decreased and then increased with an increase in acidity coefficient (Mk) from 1.0 to 2.4. The samples could form a eutectic system in the Mk range of 1.4–1.8, and therefore have a relatively low melting temperature in this Mk range. Fly ash could react with magnesium slag and calcined dolomite to form akermanite, gehlenite-magnesium, and anorthite at temperatures close to the melting temperature; therefore, these crystalline phases were the main reaction products formed in the samples with Mk values lower than 1.80. Anorthite reacted further with some Na-containing and Si-containing spieces to produce labradorite. Thus, the content of anorthite and labradorite rapidly increased and they became the major crystal phases in the blend samples with Mk values greater than 1.80. MAS-NMR spectroscopic analysis revealed that the network structure of the melts depended on the ratio of bridging oxygen to non-bridging oxygen; a high ratio of bridging oxygen to non-bridging oxygen could lead to the formation of a dense network structure in the melt. The blends of fly ash and magnesium slag can be used to produce wool fibers and continuous fibers. In addition, the suitable temperature ranges for the production of both types of fibers were determined. The drawing temperature for continuous fiber production depended on the degree of polymerization and structure of the melt.  相似文献   
2.
It is urgently necessary to seek more simple and effective methods to construct superhydrophobic metal surfaces to improve the corrosion resistance and antifouling performance. Herein, a facile method for fabricating superhydrophobic aluminum alloy surface is developed via boiling water treatment and stearic acid modification. It is noteworthy that no prepolishing on aluminum alloy is required and no caustic reagents and typical equipments are used during the preparation procedure. Therefore, the fabrication method is quite a simple and environment-friendly technique. Both micro- and nano-scaled binary structure forms at the resultant aluminum alloy surface while long alkyl chains are grafted onto the rough aluminum alloy surface chemically. Consequently, the resultant aluminum alloy exhibits outstanding superhydrophobicity. More importantly, the superhydrophobicity has excellent universality, diversity, stability, excellent corrosion resistance, and antifouling performance. The facile preparation, excellent superhydrophobic durability, and outstanding performance are quite in favor of the practical application.  相似文献   
3.
In this study, chemically bonded phosphate ceramic coatings (CBPCCs) with different contents of aluminum phosphate (AP) are prepared on stainless steel (AISI 304L). Differential scanning calorimetry, X-ray diffraction, contact angle test, and a tribocorrosion experiment are carried out to clarify the role of AP in the tribocorrosion performance of CBPCCs. The results show that, with the increase in the AP content, the enthalpy of curing increases because of the greater formation of the bonding phase AlPO4. Both in static corrosion and in tribocorrosion, the corrosion current density of CBPCCs achieves the lowest value when the weight ratio of AP to polytetrafluoroethylene is about 0.78. Additionally, the influence mechanism of AP on tribocorrosion is clarified. AlPO4 from the reaction between AP and Al2O3 has excellent mechanical properties and can enhance the wear resistance of CBPCCs by reducing the mechanical wear and the increased wear due to corrosion. The alumina particles wrapped by AlPO4 can form a dense and smooth surface and change the direction of electrolyte propagation, which leads to the increase in the tribocorrosion resistance of CBPCCs.  相似文献   
4.
The microstructure and chemical compositions of the solid solution-treated Mg-3Nd-1Li-0.2Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),electron probe micro-analyzer(EPMA)and X-ray photoelectron spectroscopy(XPS).The corrosion behaviour of the alloy was investigated via electrochemical polarization,electrochemical impedance spectroscopy(EIS),hydrogen evolution test and scanning Kelvin probe(SKP).The results showed that the microstructure of the as-extruded Mg-3Nd-1Li-0.2Zn alloy contained α-Mg matrix and nanometric second phase Mg41 Nd5.The grain size of the alloy increased significantly with the increase in the heat-treatment duration,whereas the volume fraction of the second phase decreased after the solid solution treatment.The surface film was composed of oxides(Nd2O3,MgO,Li2O and ZnO)and carbonates(MgCO3 and Li2CO3),in addition to Nd.The as-extruded alloy exhibited the best corrosion resistance after an initial soaking of 10 min,whereas the alloy with 4h-solution-treatment possessed the lowest corrosion rate after a longer immersion(1 h).This can be attributed to the formation of Nd-containing oxide film on the alloys and a dense corrosion product layer.The dealloying corrosion of the second phase was related to the anodic Mg41Nd5 with a more negative Volta potential relative to α-Mg phase.The preferential corrosion of Mg41Nd5 is proven by in-situ observation and SEM.The solid solution treatment of Mg-3Nd-1Li-0.2Zn alloy led to a shift in corrosion type from pitting corrosion to uniform corrosion under long-term exposure.  相似文献   
5.
Methanol crossover is one of the main challenges for direct methanol fuel cells (DMFCs). Depositing a metal barrier on Nafion can reduce the crossover but usually faces the metal cracking issues. This study presents a new composite membrane in which an anodic aluminum oxide (AAO) substrate is impregnated with a Nafion solution and then coated with a layer of Au. The AAO/Nafion/Au composite membrane shows an ideal metal crack-free surface. Higher and more stable voltage has been achieved for the cell with the membrane, indicating an effectively suppressed methanol-crossover. Results reveal that there is a tradeoff between suppressing the methanol crossover and increasing the ion transmission. By optimizing the membrane, it can not only suppress the methanol crossover but also enhance the output performance of DMFCs. The current density and power density of the cells can be enhanced by 59% and 52.85%, respectively, compared to the cell with a commercial Nafion 117. Overall, this work provides a new approach to designing crack-free membranes for DMFCs.  相似文献   
6.
《Ceramics International》2022,48(16):22699-22711
An integrated experimental and thermodynamic modeling study of the phase equilibria in the ‘CuO0.5’-MgO-SiO2 system in equilibrium with liquid Cu metal has been undertaken to better understand the reactions between MgO-based refractories and liquid slag in copper converting and refining processes. New experimental phase equilibria data at 1250–1680 °C were obtained for this system using a high-temperature equilibration of synthetic mixtures with predetermined compositions in silica ampoules or magnesia crucibles, a rapid quenching technique, and electron probe X-ray microanalysis of the equilibrated phase compositions. The system has been shown to contain primary phase fields of cristobalite (SiO2), tridymite (SiO2), pyroxene/protoenstatite (MgSiO3), olivine/forsterite (Mg2SiO4), periclase (MgO), and cuprite (Cu2O). Three regions of 2-liquid immiscibility were found—two in the high-silica range of compositions above the cristobalite primary phase field (close to ‘CuO0.5’-SiO2 and MgO–SiO2 binaries) and one in the low-SiO2, high-‘CuO0.5’ compositional region above the periclase and olivine phase fields. The results obtained in this study indicate that silica in high-copper refining slags likely led to olivine and pyroxene phase formation, increased solubility of MgO in liquid slag, and decline in the performance of MgO-based refractories. New experimental data were used in the development of a thermodynamic database describing this pseudo-ternary system.  相似文献   
7.
MgH2 is considered as a promising hydrogen storage material for on-board applications. In order to improve hydrogen storage properties of MgH2, the amorphous TiMgVNi3-doped MgH2 is prepared by ball milling under hydrogen atmosphere. It is found that the catalytic (Ti,V)H2 and Mg2NiH4 nanoparticles are in situ formed after activation. As a result, the amorphous TiMgVNi3-doped MgH2 exhibits enhanced dehydrogenation kinetics (the activation energy for hydrogen desorption is 94.4 kJ mol?1 H2) and superior cycle durability (the capacity retention rate is up to 92% after 50 cycles). These results demonstrate that the in situ formation of highly dispersed catalytic nanoparticles from an amorphous phase is an effective pathway to enhance hydrogen storage properties of MgH2.  相似文献   
8.
The use of a Pt-based catalyst was evaluated for autocatalytic hydrogen recombination. The Pt was supported on a mixture of Ce-, Zr- and Y-oxides (CZY) to yield nanosized Pt particles. The Pt/CZY/AAO catalyst was then prepared by the spray-deposition of the Pt/CZY intermediate onto an anodized aluminium oxide (AAO) layer on a metallic aluminum core. The Pt/CZY/AAO catalyst (3 × 1 cm) was evaluated for hydrogen combustion (1–8 vol% hydrogen in the air) in a recombiner section testing station. The thermal distribution throughout the catalyst surface was investigated using an infrared camera. The maximum temperature gradient (ΔT) for the examined hydrogen concentrations did not exceed 36 °C. The Pt/CZY/AAO catalyst was also evaluated for prolonged hydrogen combustion duration to assess its durability. An average combustion temperature of 239.0 ± 10.0 °C was maintained for 53 days of catalytic hydrogen combustion, suggesting that there was limited, or no, catalyst deactivation. Finally, a Pt/CZY/AAO catalytic plate (14.0 × 4.5 cm) was prepared to investigate the thermal distribution. An average surface temperature of 212.5 °C and a maximum ΔT of 5.4 °C was obtained throughout the catalyst surface at a 3 vol% hydrogen concentration.  相似文献   
9.
赵兴杰  杨坤  胡途 《矿冶工程》2022,42(6):111-114
为提高粉煤灰中铝提取率, 采用机械活化对粉煤灰进行预处理, 探讨了机械活化对粉煤灰焙烧-酸浸效果的影响。结果表明: 机械活化能提高粉煤灰比表面积、增加反应活性点, 促进活化反应的进行; 通过机械活化, 在Na2CO3与Al2O3物质的量比1.6、850 ℃下焙烧50 min后酸浸, 铝浸出率达到91.58%。  相似文献   
10.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号