首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227287篇
  免费   22907篇
  国内免费   14983篇
电工技术   9722篇
技术理论   4篇
综合类   13779篇
化学工业   73078篇
金属工艺   13871篇
机械仪表   7183篇
建筑科学   6076篇
矿业工程   3858篇
能源动力   7619篇
轻工业   30312篇
水利工程   1913篇
石油天然气   10166篇
武器工业   1258篇
无线电   20163篇
一般工业技术   25248篇
冶金工业   8417篇
原子能技术   3929篇
自动化技术   28581篇
  2024年   421篇
  2023年   3784篇
  2022年   4956篇
  2021年   7853篇
  2020年   7324篇
  2019年   6533篇
  2018年   5753篇
  2017年   7636篇
  2016年   7743篇
  2015年   8384篇
  2014年   11242篇
  2013年   13820篇
  2012年   16660篇
  2011年   17510篇
  2010年   13771篇
  2009年   14900篇
  2008年   13548篇
  2007年   16219篇
  2006年   15158篇
  2005年   12349篇
  2004年   10363篇
  2003年   8740篇
  2002年   7104篇
  2001年   5683篇
  2000年   4887篇
  1999年   4042篇
  1998年   3236篇
  1997年   2516篇
  1996年   2314篇
  1995年   2017篇
  1994年   1839篇
  1993年   1444篇
  1992年   1131篇
  1991年   886篇
  1990年   765篇
  1989年   552篇
  1988年   394篇
  1987年   301篇
  1986年   250篇
  1985年   239篇
  1984年   211篇
  1983年   111篇
  1982年   141篇
  1981年   85篇
  1980年   101篇
  1979年   59篇
  1978年   29篇
  1977年   36篇
  1976年   29篇
  1951年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Journal of dairy science》2022,105(8):7097-7110
Biotin (B8), folate (B9), and vitamin B12 (B12) are involved in several metabolic reactions related to energy metabolism. We hypothesized that a low supply of one of these vitamins during the transition period would impair metabolic status. This study was undertaken to assess the interaction between B8 supplement and a supplementation of B9 and B12 regarding body weight (BW) change, dry matter intake, energy balance, and fatty acid (FA) compositions of colostrum and milk fat from d ?21 to 21 relative to calving. Thirty-two multiparous Holstein cows housed in tie stalls were randomly assigned, according to their previous 305-d milk yield, to 8 incomplete blocks in 4 treatments: (1) a 2-mL weekly i.m. injection of saline (0.9% NaCl; B8?/B9B12?); (2) 20 mg/d of dietary B8 (unprotected from ruminal degradation) and 2-mL weekly i.m. injection of 0.9% NaCl (B8+/B9B12?); (3) 2.6 g/d of dietary B9 (unprotected) and 2-mL weekly i.m. injection of 10 mg of B12 (B8?/B9B12+); (4) 20 mg/d of dietary B8, 2.6 g/d of dietary B9, and 2-mL weekly i.m. injection of 10 mg of B12 (B8+/B9B12+) in a 2 × 2 factorial arrangement. Colostrum was sampled at first milking. and milk samples were collected weekly on 2 consecutive milkings and analyzed for FA composition. Body condition score and BW were recorded every week throughout the trial. Within the first 21 d of lactation, B8?/B9B12+ cows had an increased milk yield by 13.5% [45.5 (standard error, SE: 1.8) kg/d] compared with B8?/B9B12? cows [40.1 (SE: 1.9)], whereas B8 supplement had no effect. Even though body condition score was not affected by treatment, B8?/B9B12+ cows had greater BW loss by 24 kg, suggesting higher mobilization of body reserves. Accordingly, milk de novo FA decreased and preformed FA concentration increased in B8?/B9B12+ cows compared with B8?/B9B12? cows. In addition, cows in the B8+/B9B12? group had decreased milk de novo FA and increased preformed FA concentration compared with B8?/B9B12? cows. Treatment had no effect on colostrum preformed FA concentration. Supplemental B8 decreased concentrations of ruminal biohydrogenation intermediates and odd- and branched-chain FA in colostrum and milk fat. Moreover, postpartum dry matter intake for B8+ cows tended to be lower by 1.6 kg/d. These results could indicate ruminal perturbation caused by the B8 supplement, which was not protected from rumen degradation. Under the conditions of the current study, in contrast to B8+/B9B12? cows, B8?/B9B12+ cows produced more milk without increasing dry matter intake, although these cows had greater body fat mobilization in early lactation as suggested by the FA profile and BW loss.  相似文献   
2.
Hydrogen peroxide (H2O2) has been listed as one of the 100 most important chemicals in the world. However, huge amount of residual H2O2 is hard to timely decomposed into O2 and H2O under acidic condition, easily resulting in explosion hazard. Here, we reported a core–shell structure catalyst, that is graphene with Co N structure encapsulated Co nanoparticles. Co N graphene shell serves as the active site for the H2O2 decomposition, and Co core further enhance this decomposition. Benefiting from it, the H2O2 decomposition were close to 100% after 6 cycles without pH adjustment, which increased 6 orders of magnitude compared with no catalyst. At the same time, the O2 generation reached 99.67% in 2 h with little metal leaching, and ·OH has been greatly inhibited to only 0.08%. This work can cleanly remove H2O2 with little deep oxidation and protect the process of H2O2 utilization to achieve a safer world.  相似文献   
3.
A double pyrovanadate CaMgV2O7 sample was synthesized via a facile solid-state route under an air atmosphere. The nonequilibrium formation pathways of the CaMgV2O7 were investigated via powder X-ray diffraction. A multistep reactions path (metavanadates–pyrovanadates–double pyrovanadate CaMgV2O7) was proposed to describe the formation of the CaMgV2O7 considering the thermodynamic and kinetic factors. The cell unit parameters of the CaMgV2O7 sample indicated the crystallization according to a monoclinic system with space group P12/c1(14), and the lattice parameters of a = 6.756 Å, b = 14.495 Å, c = 11.253 Å, β = 99.12, and V = 108.806 Å3. X-ray photoelectron spectroscopy also confirmed the +5 oxidation state vanadium in CaMgV2O7. The endothermic effects at 1033 and 1143 K were related to the incongruent melting and liquidus temperatures of CaMgV2O7, respectively. The comprehensive thermodynamic properties of CaMgV2O7 were established in both low- and high-temperature regions, utilizing a physical property measurement system and multi-high-temperature calorimetry (96 lines). The heat capacity (200 J mol K−1) and entropy (198 J mol K−1) at 298.15 K were computed based on the low-temperature heat capacity values, and the enthalpy of formation at 298.15 K was also estimated. The fitted high-temperature capacity can be used to obtain the changes in the enthalpy, entropy, and Gibbs free energy. This study is part of building a reliable thermodynamic database of the CaO–MgO–V2O5 system.  相似文献   
4.
This work describes facile synthesis of a porous polymeric material ( T-HCP ) using readily available reagents. Specifically, T-HCP is a thermally stable and hypercrosslinked polymer (HCP) that is essentially microporous with a high BET specific surface area (940 m2 g?1). Triptycene based polymers are known to feature internal free volume. Thus, the incorporation of triptycene units and extensive crosslinking by an external cross-linker in T-HCP makes it a promising adsorbent for small gas capture applications. Experimental results show that T-HCP demonstrated good CO2 capture capacity of 132 mg g?1 (273 K, 1 bar). Molecular hydrogen storage capacity of T-HCP is estimated to be 17.7 mg g?1 (77 K, 1 bar). T-HCP revealed high CO2/N2 selectivity (up to 63) as well as promising CO2/CH4 (up to 9.1) selectivity suggesting its potential applicability for CO2 separation from flue and natural gases.  相似文献   
5.
崔荣荣 《包装工程》2022,43(6):11-23
目的 了解近年来传统纺织服饰图案的研究动态及发展趋势,归纳学术研究成果并进行评价,总结研究传统服饰图案的意义和对现代设计的启示。方法 基于史论视角、社会文化视角、工艺美术视角和设计艺术视角梳理相关文献,结合现有研究分析中国传统服饰图案的资料来源及其特色、传统服饰图案的研究热点、新时代传统服饰图案的生存策略及中国传统服饰图案创新设计的应用领域。结果指出传统服饰图案的研究史料取材丰富、研究类型呈现多元;当前传统服饰图案的传承与创新体现了数字化发展、美育引导、政策支持的特点;传统服饰图案在服装设计、公共空间、文创产品中大放异彩。结论 中国传统纺织服饰图案研究多点开花,但缺乏系统整体的“中国传统纺织服饰图案知识谱系”用于指导相关研究和实践,对中国传统纺织服饰图案的研究多处于实证分析的层面且欠缺深入独到的理论,通过综述与价值阐述,提出研究的不足之处,纵深学术研究,同时为中国传统纺织服饰图案的现代设计提供新思路。  相似文献   
6.
In the present work it is found that the pyrotechnic composition VS-2 can be initiated with flash lamps IFC-500 and EVIS. VS-2 pyrotechnic composition contains 90% of mercury(Ⅱ) 5-hydrazinotetrazolate perchlorate and 10% of optically transparent copolymer of 2-methyl-5-vinyltetrazole and methacrylic acid (PVMT). We have found that the flash lamps make it possible to initiate combustion of VS-2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high, and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm-2 and 90 mg·cm-2, showing ignition delay times 10 μs and 3 μs, respectively. We also measured detonation velocities for VS-2 composition film charges, which were 4375-4505 m·s-1 (of the charge being surface mass 60 mg·cm-2) and 4221-4281 m·s-1 (of the charge being surface mass 90 mg·cm-2) and their blasting action on the aluminum plate. The depths of the normal shock wave imprints at the charge-barrier interface were 0.6-0.7 mm (for surface mass of the film charges 60 mg·cm-2) and 1.2-1.3 mm (for surface mass of the film charges 90 mg·cm-2).  相似文献   
7.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   
8.
《Ceramics International》2022,48(21):31695-31704
In this study, ceramic membranes made of montmorillonite, perlite and iron were used to remove As(III) from water. Membranes prepared with 0.0, 0.5, 1.0, and 1.5 wt% of iron content were used to filtrate As(III) synthetic water and surface water solutions. As(III) adsorption capacity and removal efficiency, and other parameters such as cations and anions content, turbidity, pH, electrical conductivity were used to evaluate the membranes' performance. Results show that the As(III) adsorption/removal capacity of membranes was improved by the addition of iron. Adsorption capacity of 7.5 μg As(III)/g and removal efficiency of 97% can be achieved in membranes with 1.0 wt% of iron filings content for surface water; however, a greater amount of iron in the membrane structure limits the adsorption capacity of As(III). Besides the capacity of ceramic membranes to adsorb/remove As(III), membranes were also effective to remove other ions, turbidity, and electrical conductivity from the surface water. The addition of iron to the ceramic membranes enhanced their capacity to remove such surface water constituents. These results are important from the practical viewpoint showing the potential of ceramic membranes for the removal of metalloids and other water constituents. Langmuir isotherm model best described the adsorption process in ceramic membranes, suggesting that adsorption of As(III) happened on a monolayered surface of the ceramic membrane.  相似文献   
9.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
10.
Ammonia is considered as a promising hydrogen or energy carrier. Ammonia absorption or adsorption is an important aspect for both ammonia removal, storage and separation applications. To these ends, a wide range of solid and liquid sorbents have been investigated. Among these, the deep eutectic solvent (DES) is emerging as a promising class of ammonia absorbers. Herein, we report a novel type of DES, i.e., metal-containing DESs for ammonia absorption. Specifically, the NH3 absorption capacity is enhanced by ca. 18.1–36.9% when a small amount of metal chlorides, such as MgCl2, MnCl2 etc., are added into a DES composed of resorcinol (Res) and ethylene glycol (EG). To our knowledge, the MgCl2/Res/EG (0.1:1:2) DES outperforms most of the reported DESs. The excellent NH3 absorption performances of metal–containing DESs have been attributed to the synergy of Lewis acid–base and hydrogen bonding interactions. Additionally, good reversibility and high NH3/CO2 selectivity are achieved over the MgCl2/Res/EG (0.1:1:2) DES, which enables it to be a potential NH3 absorber for further investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号