首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   681篇
  免费   45篇
  国内免费   11篇
电工技术   1篇
综合类   44篇
化学工业   353篇
金属工艺   2篇
机械仪表   8篇
建筑科学   4篇
矿业工程   1篇
能源动力   3篇
轻工业   145篇
石油天然气   2篇
武器工业   1篇
无线电   25篇
一般工业技术   134篇
原子能技术   1篇
自动化技术   13篇
  2024年   10篇
  2023年   11篇
  2022年   3篇
  2021年   18篇
  2020年   28篇
  2019年   36篇
  2018年   26篇
  2017年   36篇
  2016年   23篇
  2015年   17篇
  2014年   40篇
  2013年   54篇
  2012年   61篇
  2011年   70篇
  2010年   59篇
  2009年   52篇
  2008年   29篇
  2007年   40篇
  2006年   44篇
  2005年   22篇
  2004年   8篇
  2003年   16篇
  2002年   7篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1989年   1篇
  1985年   2篇
排序方式: 共有737条查询结果,搜索用时 15 毫秒
1.
There is currently considerable interest in developing stiff, strong, tough, and heat resistant poly(lactide) (PLA) based materials with improved melt elasticity in response to the increasing demand for sustainable plastics. However, simultaneous optimization of stiffness, strength, and toughness is a challenge for any material, and commercial PLA is well-known to be inherently brittle and temperature-sensitive and to show poor melt elasticity. In this study, we report that high-shear mixing with cellulose nanocrystals (CNC) leads to significant improvements in the toughness, heat resistance, and melt elasticity of PLA while further enhancing its already outstanding room temperature stiffness and strength. This is evidenced by (i) one-fold increase in the elastic modulus (6.48 GPa), (ii) 43% increase in the tensile strength (87.1 MPa), (iii) one-fold increase in the strain at break (∼6%), (iv) two-fold increase in the impact strength (44.2 kJ/m2), (v) 113-fold increase in the storage modulus at 90°C (787.8 MPa), and (vi) 103-fold increase in the melt elasticity at 190°C and 1 rad/s (∼105 Pa) via the addition of 30 wt% CNC. It is hence possible to produce industrially viable, stiff, strong, tough, and heat resistant green materials with improved melt elasticity through high-shear mixing.  相似文献   
2.
以从自然腐败的樱桃上分离的链格孢霉(Alternaria sp.)LD3.0086为指示菌,研究苯乳酸对链格孢霉的主要抑制作用靶位。应用分光光度法测定苯乳酸对链格孢霉的最小抑菌浓度,通过卡尔科弗卢尔荧光增白剂染液(calcofluor white,CFW)染色观察苯乳酸对菌丝顶端生长的破坏作用,利用扫描电子显微镜和透射电子显微镜观察链格孢霉的超微结构变化,通过测定苯乳酸作用前后链格孢霉上清液中N-乙酰葡萄糖胺质量浓度变化研究苯乳酸对菌丝细胞壁的破坏作用,应用荧光双染色法观察苯乳酸对链格孢霉菌丝细胞膜的损伤作用。结果表明,12.5 mmol/L的苯乳酸能有效抑制链格孢霉的生长;与对照组(无菌水处理)相比,苯乳酸处理后链格孢霉顶端生长细胞无明显形变,经12.5 mmol/L苯乳酸处理的链格孢霉上清液中N-乙酰葡萄糖胺质量浓度基本不变;苯乳酸处理24 h,链格孢霉菌丝细胞壁表面无明显损伤,细胞内结构发生明显变化;苯乳酸短时间(4 h)处理链格孢霉,菌丝细胞膜仍较为完整,加入苯乳酸较长时间(8 h)后细胞膜发生破裂。综合分析可知,苯乳酸对链格孢霉的主要作用靶位应不是菌丝体的细胞壁和细胞膜,而是在菌丝体内部,通过破坏菌丝内部细胞器结构或引起细胞内的生化反应,从而抑制链格孢霉的生长和繁殖,发挥抑菌活性。  相似文献   
3.
Objective: To develop an oral sustained release formulation of mycophenolate mofetil (MMF) for once-daily dosing, using chitosan-coated polylactic acid (PLA) or poly(lactic-co-glycolic) acid (PLGA) nanoparticles. The role of polymer molecular weight (MW) and drug to polymer ratio in encapsulation efficiency (EE) and release from the nanoparticles was explored in vitro.

Methods: Nanoparticles were prepared by a single emulsion solvent evaporation method where MMF was encapsulated with PLGA or PLA at various polymer MW and drug: polymer ratios. Subsequently, chitosan was added to create coated cationic particles, also at several chitosan MW grades and drug: polymer ratios. All the formulations were evaluated for mean diameter and polydispersity, EE as well as in vitro drug release. Differential scanning calorimetry (DSC), surface morphology, and in vitro mucin binding of the nanoparticles were performed for further characterization.

Results: Two lead formulations comprise MMF: high MW, PLA: medium MW chitosan 1:7:7 (w/w/w), and MMF: high MW, PLGA: high MW chitosan 1:7:7 (w/w/w), which had high EE (94.34% and 75.44%, respectively) and sustained drug release over 12?h with a minimal burst phase. DSC experiments revealed an amorphous form of MMF in the nanoparticle formulations. The surface morphology of the MMF NP showed spherical nanoparticles with minimal visible porosity. The potential for mucoadhesiveness was assessed by changes in zeta potential after incubation of the nanoparticles in mucin.

Conclusion: Two chitosan-coated nanoparticles formulations of MMF had high EE and a desirable sustained drug release profile in the effort to design a once-daily dosage form for MMF.  相似文献   

4.
A 3D porous poly(lactic acid) (PLA) scaffold with high porosity and well‐connected pores is fabricated using a vacuum‐assisted solvent casting technique. Its surface is modified with hydroxyapatite (HA) nanoparticles using ultrasonication to prepare an HA‐modified PLA/HA scaffold. For reference, an HA‐blended (b‐PLA‐HA) scaffold is fabricated via the solution blending method. The morphology, porosity, hydrophilicity, swelling ratio, mechanical properties, and cell viability of the PLA, b‐PLA‐HA, and PLA/HA scaffolds are systematically studied. The results show that HA nanoparticles are successfully introduced onto the surface of the PLA/HA scaffold, and strong interactions occur between the HA nanoparticles and the PLA matrix. The PLA/HA scaffold still has a high porosity of more than 85% after ultrasonication. The hydrophilicity and mechanical properties of the PLA/HA scaffold are significantly higher than those of the PLA and b‐PLA‐HA scaffolds. Compared with the PLA and b‐PLA‐HA scaffolds, the attachment and growth of mouse embryonic osteoblasts cells (MC3T3‐E1) cultured on the PLA/HA scaffold significantly improve, due to most HA nanoparticles on the surface, resulting in a good and direct interaction between the cells and the scaffold. Therefore, the PLA/HA scaffold possesses great potential to be used as a tissue engineering scaffold.  相似文献   
5.
Electrospinning of a polymer melt is an ideal technique to produce highly porous nanofibrous or microfibrous scaffolds appropriate for biomedical applications. In recent decades, melt electrospinning has been known as an eco‐friendly procedure as it eliminates the cytotoxic effects of the solvents used in solution electrospinning. In this work, the effects of spinning conditions such as temperature, applied voltage, nozzle to collector distance and collector type as well as polyethylene glycol (PEG) concentration on the diameter of melt electrospun polylactic acid (PLA)/PEG fibers were studied. The thermal stability of PLA/PEG blends was monitored through TGA and rheometry. Morphological investigations were carried out via optical and scanning electron microscopy. Based on the results, blends were almost stable over the temperature range of melt electrospinning (170 ? 230 °C) and a short spinning time of 5 min. To obtain non‐woven meshes with uniform fiber morphologies, experimental parameters were optimized using ANOVA. While increasing the temperature, applied voltage and PEG content resulted in thinner fibers, PEG concentration was the most influential factor on the fiber diameter. In addition, a nozzle to collector distance of 10 cm was found to be the most suitable for preparing uniform non‐woven PLA/PEG meshes. At higher PEG concentrations, alterations in the collector distance did not affect the uniformity of fibers, although at lower distances vigorous bending instabilities due to polarity augmentation and viscosity reduction resulted in curly fibrous meshes. Finally, the finest and submicron scale fibers were obtained through melt electrospinning of PLA/PEG (70/30) blend collected on a metallic frame. © 2017 Society of Chemical Industry  相似文献   
6.
In this paper we report on the fabrication of spin-coated biodegradable polylactic acid (PLA) thin films to be used as substrates for the realisation of all-solution-processed organic electronic devices. The full mechanical and electrical characterisation of these substrates shows that they exhibit good mechanical and dielectric properties and are therefore suitable for the fabrication of disposable electronics. To demonstrate practically the functionality of such PLA thin films, organic electronic devices were realised on the top of them, exclusively by means of solution-process fabrication techniques and in particular inkjet-printing. Also, a photonic curing procedure is here presented as a means for sintering the conductive inks without heating up the PLA substrates. Two types of organic transistors were fabricated on the top of PLA: organic field-effect transistors (OFETs), where the PLA film was used not only as a substrate but also as the gate dielectric, and all-inkjet-printed organic electrochemical transistors (OECTs). The second typology of transistors exhibited one of the highest transconductance reported so far in the literature (up to 2.75 mS). This study opens an avenue for the fabrication of disposable, low-cost organic electronic devices.  相似文献   
7.
《Ceramics International》2020,46(6):7288-7297
The effects of two nano– and micro– size classes of hydroxyapatite particles ((Ca10(PO4)6(OH)2), HAp) on the controlled stability behavior of poly(lactic acid) are investigated by chemiluminescence, thermal analysis, water uptake and contact angle measurements. The accelerated degradation was achieved by γ-irradiation, when the two constitutive phases interact at the boundary limit partially blocking oxidation. In this paper we studied and characterized the influence of specific particle areas on various material properties, namely thermal and radiation strengths, water diffusion, and wettability. The better behavior of nanostructured patters is explained by the larger adsorption action and the unlike scavenging interaction between free radicals and filler particles. We also analyzed the interaction between the basic material and filler when the loading concentration is changed. The higher stabilization efficiency of PLA/nHAp systems offered by our present results recommends the selection of nanocomposite hybrids as the suitable composition for the manufacture of long life products including medical wear.  相似文献   
8.
Rheological and interfacial tension data were employed to predict the morphology and thermal and mechanical properties of noncompatibilized and compatibilized poly(lactic acid) (PLA)/thermoplastic elastomer (TPE) blends. PLA was melt blended with thermoplastic polyurethane (TPU) and ethylene elastomer (EE) and compatibilized by ethylene–butyl acrylate–glycidyl methacrylate (EBG) in an internal mixer chamber. Both TPU and EE TPEs have higher viscosities than PLA, and the interfacial properties evaluated have revealed better adhesion between domains of PLA–TPU. The efficiency of the compatibilizer agent EBG depended on the TPE type inferred by modifications in the scanning electron microscopy images of PLA/TPE blends and by the Izod impact strength (improved by 23%). The EBG was more effective in the PLA/TPU blend. The TPEs and EBG did not affect the PLA thermal stability, and no thermal event was observed in the usual PLA extrusion and injection temperature range. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47962.  相似文献   
9.
Poly(lactic acid) (PLA) bead foams with stereocomplex (Sc)/α crystals were prepared by melt mixing and solid‐state foaming methods, independently. A systematic method was applied to evaluate the effect of Sc/α crystals on rheological properties and foaming behavior of PLA. The results indicated that the presence of Sc/α crystals affected the foaming behavior and the melt elasticity of PLA. Hence, the enhanced rheological properties of PLA had a significant effect on controlling the foaming behavior. As a result, PLA bead foam with an expansion ratio of 24‐fold was developed. And, the presence of Sc/α crystals could also facilitate the sintering behavior and broaden the sintering process window. Sintered PLA bead foam with finer cellular morphology and strong sintering effect was obtained by inducing an appropriate Sc/α crystalline structure. © 2018 Society of Chemical Industry  相似文献   
10.
Understanding friction behavior of human skin is indispensable in order to optimize surfaces and materials in contact with the skin. The coefficient of friction (COF) for different materials contacting against the skin is mainly influenced by the nature of the materials, mechanical contact parameters, and physiological skin conditions. The aim of the present research work was to study the grip effect of two different polymeric materials by producing different textured patterns using a 3D printing microfabrication technique and a replication technique. It was found that under the same contact conditions, a difference in the friction amplitude exists between the two different polymeric materials and that positive texturing, which consists of high relief or protrusions, showed higher COFs than negative texturing, consisting of low relief, holes, or dimples, which showed a decrease in friction as the textured pattern area density increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号