首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   3篇
  国内免费   1篇
综合类   1篇
化学工业   44篇
金属工艺   3篇
机械仪表   1篇
建筑科学   2篇
能源动力   1篇
轻工业   4篇
无线电   4篇
一般工业技术   16篇
  2023年   1篇
  2022年   6篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   7篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   3篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
A sampling program has been undertaken to investigate the variations of disinfection by-products (DBPs) formation and nature and fate of natural organic matter (NOM) through water treatment plants in Istanbul. Specific focus has been given to the effect seasonal changes on the formation of DBPs and organic precursors levels. Water samples were collected from the three reservoirs inlet and within three major water treatment plants of Istanbul, Turkey. Changes in the dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV(254)), specific ultraviolet absorbance (SUVA), trihalomethane formation potential (THMFP), and haloacetic acids formation potential (HAAFP) were measured for both the treated and raw water samples. The variations of THM and HAA concentrations within treatment processes were monitored and also successfully assessed. The reactivity of the organic matter changed throughout the year with the lowest reactivity (THMFP and HAAFP) in winter, increasing in spring and reaching a maximum in fall season. This corresponded to the water being easier to treat in fall and an increase in the proportion of hydrophobic content. Understanding the seasonal changes in organic matter character and their reactivity with treatment chemicals should lead to a better optimization of the treatment processes and a more consistent water quality.  相似文献   
2.
Hafnium alkoxide modified polysilazane was synthesized by the drop-wise addition of hafnium tetra(n-butoxide) to polysilazane. The solid state thermolysis (SST) temperature and the ceramic yield for both the polysilazane and modified polysilazane were determined by performing thermogravimetry. Fourier transform infrared spectroscopy was performed to understand the polymer to ceramic conversion as well as the bonding characteristics of the ceramics. The modified polymer after crosslinking was subjected to SST at 800 °C at a constant heating rate of 5 °C/min for a dwell time of 2 h in atmospheric ambience. From the X-ray diffractograms, the as-thermolysed ceramics were observed to remain X-ray amorphous and on heat-treatment resulted in the crystallization of tetragonal hafnia. However, on heat-treatment at 1500 °C, reverse phase transformation from tetragonal to monoclinic hafnia was observed. Raman spectroscopy and transmission electron microscopy were employed to further understand the phase evolution. The thermal stability and the influence of amorphous matrix on the coarsening of HfO2 were also evaluated.  相似文献   
3.
Novel continuous freestanding β-SiC/SiOxCy/Cfree nanocomposite films, namely, β-SiC nano-crystals in amorphous SiOxCy and free C cluster matrix material, were fabricated by melt spinning the polycarbosilane (PCS) precursor. Effects of oxidation curing time and sintering temperatures on the photoluminescence (PL) properties of nanocomposite films were investigated. The PL spectra show two strong blue emissions at 416 nm and 435 nm, which are unchanged neither with oxygen content nor with β-SiC crystallite size. The PL intensity of the films is enhanced by increasing curing time when sintered at 1200 °C. However, a reversed trend is identified after the films were sintered at 1300 °C. Spectroscopy and microscopy studies indicate that the radiative recombination of carriers is ascribed to the oxygen mono- and di-vacancy from SiOxCy at the surfaces of β-SiC nano-crystals, whereas the photogeneration of carriers occurs in the β-SiC nano-crystals cores. The obtained results are expected to have important applications in advanced optoelectronic devices.  相似文献   
4.
The main aim of this research was to enhance the understanding of the formation mechanisms of benzo(a)pyrene (BaP) during roasting of sesame seeds (SS). BaP levels in hot‐ and cold‐pressed sesame seed oil (SSO) were evaluated to correlate oil technology and BaP formation. Extracted principal components from SS were roasted either singly or in mixtures at 230 °C for 30 min. BaP was measured by HPLC with fluorescence detection. The results showed that BaP levels in hot‐pressed SSO were significantly higher than those in cold‐pressed SSO (p < 0.05), BaP formation mostly occurred during SS roasting and increased with roasting temperature (between 80 and 280 °C) and time (from 10 to 50 min). Furthermore, the BaP level in the roasted hulled SS (3.64 μg/kg) was higher than it was in roasted whole SS (1.63 μg/kg). The maximum BaP level observed (5.03 μg/kg) was detected in a roasted mixture of SS protein and SSO. The addition of sesame protein to protein‐free SSO promoted the formation of BaP, which suggests that the pyrolysis products of protein and triacylglycerols are probably important precursors in BaP formation.  相似文献   
5.
To find new ways for reducing the potential of palm oil to form 3‐monochloropropane‐1,2‐diol (3‐MCPD) and glycidyl esters during refining it is helpful to know more about the influence of different precursors like diacylglycerols (DAGs) and monoacylglycerols (MAGs), lecithin, and chlorine containing compounds. After adding increasing amounts of the different precursors to a model oil obtained by removal of polar compounds from crude palm oil and heating the mixture under standardized conditions to 240°C for 2 h the contents of 3‐MCPD and glycidyl esters were analyzed according to the standard procedure of DGF C‐VI 18 (10). DAGs and MAGs were found to increase the potential of palm oil to form 3‐MCPD and glycidyl esters, but refined lecithin showed no influence. Sodium chloride as well as tetra‐n‐butylammoniumchloride (TBAC) led to higher contents of the esters. Whereas the addition of TBAC raised the amount of glycidyl esters as well as 3‐MCPD esters, sodium chloride largely raised the amount of 3‐MCPD esters. An addition of 5 mmol of sodium carbonate/kg model oil spiked with sodium chloride reduced the amount of glycidyl esters almost completely; the 3‐MCPD esters were reduced by 50%. About 1 mmol sodium hydrogen carbonate/kg oil reduced both 3‐MCPD and glycidyl esters almost completely. Practical applications : For the mitigation of the formation of 3‐MCPD esters and related compounds in refined edible oils, it is helpful to know more about the effect of different possible precursors. Using a broader data basis, it is possible to adopt the oil processing but especially the choice of the raw material to the demands of the market for lower contents of the esters in the refined products.  相似文献   
6.
In spite of the fact that the first polysilane derivatives were probably prepared in the mid 1920's, there was little scientific interest until recently. The synthesis of the first soluble homo and copolymers about 10 years ago has stimulated an explosive development of this class of materials. This brief review traces the historical development of the polysilanes and focuses on recent studies of polymer structure, electronic properties, photochemical reactions and mechanisms and finally on new applications.  相似文献   
7.
Yttrium hydroxide and aluminium hydroxide hydrogel were derived from yttrium nitrate and aluminium nitrate through hydroxy hydrogel route in which SiC particles were kept dispersed. The gel-like mass was heat treated at 900°C in ambient atmosphere followed by heat treatment at 1400°C in Ar atmosphere. The specimens were then sintered in the temperature range of 1800–1950°C in Ar atmosphere with 30 min soaking. The phases were identified by XRD analysis. Microstructure of the sintered materials were analysed by scanning electron micrograph. With this new method of preparation of powder precursors, the process of sintering was easier and almost theoretical density was achieved with moderate hardness. The mechanism of densification was postulated to be a solid-state initiated liquid phase sintering and the overall process of which was activated by the reactive species formed from hydroxy hydrogel powder precursors.  相似文献   
8.
The effects of ozonation, granular (GAC) and biological activated carbon (BAC) in the removal of natural organic matter and precursors of disinfection byproducts from drinking water were studied on pilot scale. Ozonation was determined to be the best method to reduce concentrations of the precursors of AOX, chloroform and mutagenicity, whereas BAC removed organic matter the most effectively. Reductions in TA100 mutagenicity were an average 40%, 4%, 26% in ozonated, GAC and BAC filtered water, respectively. Average reductions of AOX levels were similar at 48%, 7% and 35%, respectively. The chloroform formation potential always increased after GAC filtration.  相似文献   
9.
Zeolite synthesis is driven by structure-directing agents, such as tetrapropyl ammonium ions (TPA+) for Silicalite-1 and ZSM-5. However, the guiding role of these organic templates in the complex assembly to highly ordered frameworks remains unclear, limiting the prospects for advanced material synthesis. In this work, both static ab initio and dynamic classical modeling techniques are employed to provide insight into the interactions between TPA+ and Silicalite-1 precursors. We find that as soon as the typical straight 10-ring channel of Silicalite-1 or ZSM-5 is formed from smaller oligomers, the TPA+ template is partially squeezed out of the resulting cavity. Partial retention of the template in the cavity is, however, indispensable to prevent collapse of the channel and subsequent hydrolysis.
Rutger A. van Santen (Corresponding author)Email:
  相似文献   
10.
Polysiloxane loaded with SiC as inert filler, and Al as active filler, was pyrolyzed in nitrogen to fabricate SiOC composites, and the processing and properties of the filled SiOC composites were investigated. Adding SiC fillers could reduce the linear shrinkage of filler-free cured polysiloxane in order to obtain monolithic SiC/SiOC composites. The flexural strength of SiC/SiOC composites reached 201.3 MPa at a SiC filler content of 27.6 vol.%. However, SiC/SiOC composites exhibited poor oxidation resistance, thermal shock resistance and high temperature resistance. Al fillers could react with hydrocarbon generated during polysiloxane pyrolysis at 600 °C and N2 at 800 °C to form Al4C3 and AlN, respectively. The volume expansions resulting from these two reactions were in favor of the reduction in linear shrinkage and the improvement in flexural strength of SiC/SiOC composites. The flexural strength of Al-containing SiC/SiOC composites was 1.36 times that of SiC/SiOC composites without Al at an Al filler content of 20 vol.%. The addition of Al fillers remarkably improved the high temperature resistance and oxidation resistance of SiC/SiOC composites, but not thermal shock resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号