Support effects form important aspect of hydrodesulfurization (HDS) studies and mixed oxide supports received maximum attention in the last two decades. This review will focus attention on studies on mixed oxide supported Mo and W catalysts. For convenience of discussion, these are divided into Al2O3 containing mixed oxide supports, TiO2 containing mixed oxide supports, ZrO2 containing mixed oxide supports and other mixed oxide supports containing all the rest. TiO2 containing mixed oxides received maximum attention, especially TiO2–Al2O3 supported catalysts. A brief discussion about their prospects for application to ultradeep desulfurization is also included. An overview of the available literature with emphasis on research carried out in our laboratory form the contents of this publication. 相似文献
A 1% Pd catalyst (38% dispersion) was prepared by impregnating a γ-alumina with palladium acetylacetonate dissolved in acetone. The behaviour of this catalyst in oxidation and steam reforming (SR) of propane was investigated. Temperature-programmed reactions of C3H8 with O2 or with O2 + H2O were carried out with different stoichiometric ratios S(S =[O2]/5[C3H8]). The conversion profiles of C3H8 for the reaction carried out in substoichiometry of O2 (S < 1) showed two discrete domains of conversion: oxidation at temperatures below 350°C and SR at temperatures above 350°C. The presence of steam in the inlet gases is not necessary for SR to occur: there is sufficient water produced in the oxidation to form H2 and carbon oxides by this reaction. Contrary to what was observed with Pt, an apparent deactivation between 310 and 385°C could be observed with Pd in oxidation. This is due to a reduction of PdOx into Pd0, which is much less active than the oxide in propane oxidation. Steam added to the reactants inhibits oxidation while it prevents the reduction of PdOx into Pd0. Compared to Pt and to Rh, Pd has a higher thermal resistance: no deactivation occurred after treatment up to 700°C and limited deactivation after treatment up to 900°C, provided that the catalyst is maintained in an oxygen-rich atmosphere during the cooling. 相似文献
Alumina-supported vanadium oxide, VOx/Al2O3, and binary vanadium–antimony oxides, VSbOx/Al2O3, have been tested in the ethylbenzene dehydrogenation with carbon dioxide and characterized by SBET, X-ray diffraction, X-ray photoelectron spectroscopy, hydrogen temperature-programmed reduction and CO2 pulse methods. VSbOx/Al2O3 exhibited enhanced catalytic activity and especially on-stream stability compared to VOx/Al2O3 catalyst. Incorporation of antimony into VOx/Al2O3 increased dispersion of active VOx species, enhanced redox properties of the systems and formed a new mixed vanadium–antimony oxide phase in the most catalytically efficient V0.43Sb0.57Ox/Al2O3 system. 相似文献
In recent years it has been recognised by an increasing number of nations that there is considerable energy potential within MSW. As a result many countries have established R,D& D programmes to examine methods of exploiting this potential. The IEA's MSW Conversion Activity was set up in 1986 to provide an infrastructure for sharing information and co-ordinating work in this area internationally. This Activity was extended in 1989 and currently a total of 9 nations participate in it.
To cope with the wide scope of the area (encompassing both biological and thermal processing of MSW) the Activity was divided into three subgroups or Expert Working Groups (EWGs). Each of these dealt with a distinct area of expertise:
1. •Downstream effects of source separation and screening of MSW
2. •Sampling and analytical protocols
3. •Landfill gas
In addition to these groups a central secretariat based at Harwell (UK) has provided guidance, established and administered databases of contacts and produced a series of national reports.
This paper describes the achievements of the Activity and discusses work proposed for the future. 相似文献
This paper focuses on the microscopic damage and progressive failure of a composite reinforced by plain-weave glass cloth under tensile fatigue loading. The fatigue process was divided into three stages like that of multi-directional laminates. It was found that the internal damage at each stage (matrix cracks, debonds in the weft, successive debonds in the warp and ‘metadelaminations’ between warps and wefts) occurred near the cross-over point of the fabric. The modulus decay mechanism was explained by considering the progression of this internal damage. From the end of the first stage to the beginning of the middle stage, a characteristic damage state (CDS) (called a ‘meta-CDS’) was observed. It was found that woven composites have a unit area of damage accumulation (called a ‘unit cell’) and the damage of each unit cell and its distribution control the total fatigue damage of the material. 相似文献
The newly developed ingot growing techniques, as the three-grain and the columnar multigrain ingot processes, are now offering the possibility of slicing thinner wafers (≤ 100 μm). In this paper we present the results obtained on p type large area (≥ 100 cm2) and 100 μm thick wafers by using both conventional and reverse cell manufacturing technologies.The conventional cells are provided with aluminium or boron BSF plus screen-printed silver mirror or a silver-aluminium net; the reverse cells have a FSF and the deep back junction completely covered by a screen-printed or CVD silver layer.The constructing parameters have been chosen on the base of one and two dimensions modeling and both raw material and devices have been completely characterized.This work shows that very thin wafers do not introduce serious problems for the conventional manufacturing of solar cells. The efficiencies of the normal and of the reverse cells are found to be comparable and are of the same order than those of thicker cells, however at a significant lower cost. The main obtained result has to be related to the demonstration of a cell manufacturing feasibility starting from very thin wafers. 相似文献
It is shown that steady-state kinetic data do not allow the discrimination between the redox and associated mechanisms of the partial oxidation reactions. A discrimination between these mechanisms was performed using transient experiments. The obtained rate expressions are in agreement with experimental kinetic data for catalytic partial oxidation of o-xylene.
An influence of the conjugate oxidation of a catalyst surface on dynamics and kinetics of the heterogeneous catalytic oxidative reactions is considered. Computing simulation of methane oxidative coupling of methane reaction at lowered temperature and elevated pressure has been performed. It showed that the reaction order with respect to oxygen exceeding unity is consistent with the chain branching mechanism of the reaction in the presence of TiSi2 and TiB2 and showed the important role of the branching chain cycles in the low-temperature OCM reaction at elevated pressure. 相似文献
To study cell-cycle-related variations in wall permeability of Saccharomyces cerevisiae, two approaches were used. First, an asynchronous culture was fractionated by centrifugal elutriation into subpopulations containing cells of increasing size. The subpopulations represented different stages of the cell cycle as judged by light microscopy. Cell wall porosity increased when these subpopulations became enriched with budded cells. Secondly, synchronous cultures were obtained by releasing MATa cells from alpha-factor induced G1-arrest. These cultures grew synchronously for at least two generations. The cell wall porosity increased sharply in these cultures, shortly before buds became visible and was maximal during the initial stages of bud growth. It decreased in cells which had completed nuclear migration and before abscission of the bud had occurred. The porosity reached its lowest value during abscission and in unbudded cells. We examined the incorporation of mannoproteins into the wall during the cell cycle. SDS-extractable mannoproteins were incorporated continuously. However, the incorporation of glucanase-extractable mannoproteins, which are known to affect cell wall porosity, showed cyclic oscillations and reached its maximum after nuclear migration. This coincided with a rapid decrease in cell wall porosity, indicating that glucanase-extractable mannoproteins might contribute to this decrease. 相似文献
The extraction of zinc from chloride solutions with tri-n-octylphosphine oxide (TOPO) dissolved in benzene has been thermodynamically studied based on the law of mass action. A model employing the simplified Pitzer equations for stoichiometric activity coefficient estimations is found to be effective for the explanation and prediction of the distribution data, and the thermodynamic extraction constant is determined as log Ket = 5.16 ± 0.11 at 20°C. 相似文献