首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9510篇
  免费   641篇
  国内免费   532篇
电工技术   157篇
综合类   356篇
化学工业   3817篇
金属工艺   253篇
机械仪表   207篇
建筑科学   265篇
矿业工程   37篇
能源动力   303篇
轻工业   1552篇
水利工程   28篇
石油天然气   173篇
武器工业   23篇
无线电   928篇
一般工业技术   1302篇
冶金工业   89篇
原子能技术   1082篇
自动化技术   111篇
  2024年   16篇
  2023年   133篇
  2022年   145篇
  2021年   248篇
  2020年   216篇
  2019年   239篇
  2018年   254篇
  2017年   309篇
  2016年   352篇
  2015年   313篇
  2014年   479篇
  2013年   853篇
  2012年   640篇
  2011年   853篇
  2010年   588篇
  2009年   627篇
  2008年   505篇
  2007年   562篇
  2006年   613篇
  2005年   460篇
  2004年   399篇
  2003年   375篇
  2002年   259篇
  2001年   202篇
  2000年   159篇
  1999年   125篇
  1998年   105篇
  1997年   86篇
  1996年   67篇
  1995年   98篇
  1994年   61篇
  1993年   61篇
  1992年   69篇
  1991年   33篇
  1990年   45篇
  1989年   26篇
  1988年   34篇
  1987年   18篇
  1986年   14篇
  1985年   13篇
  1984年   11篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1959年   5篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(14):20041-20052
The growing demand for radiation-resistant optical glasses for space and nuclear radiation applications has attracted significant research interest. However, radiation-resistant fluorophosphate glasses have been poorly studied. In this work, we report on the tailoring and performance of radiation-resistant fluorophosphate glasses that contained cerium through codoping with Sb2O3 and Bi2O3. The physical properties, optical properties, microstructure, and defects of fluorophosphate glasses were investigated using transmittance measurements, absorption measurements, as well as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. The results showed that the radiation resistance of all codoped fluorophosphate glasses was better than the undoped cerium-containing fluorophosphate glasses after 10–250 krad(Si) irradiation. Especially in glasses doped with Bi2O3, the optical density increment at 385 nm was only 0.1482 after 250 krad(Si) irradiation. The CeO2 prevented the development of phosphate-related oxygen hole center (POHC) defects, whereas further codoping with Bi2O3 suppressed the formation of oxygen hole center (OHC) and POEC defects, reducing the breaking of phosphate chains caused by CeO2. Bi3+ is more likely than Sb3+ to change the valence, affecting the transition equilibrium of intrinsic defects and reducing the concentration of defects produced by irradiation. When codoping with Sb2O3 and Bi2O3, Bi2O3 does not enhance radiation resistance owing to the scission effect of Sb2O3 on the phosphate chain, which is not conducive to the radiation resistance of glasses. This indicates that the cerium-containing fluorophosphate glasses doped with Bi2O3 can effectively suppress the defects caused by irradiation and improve the radiation resistance of the glasses.  相似文献   
2.
《Ceramics International》2022,48(17):24592-24598
Single-phase Al4SiC4 powder with a low neutron absorption cross section was synthesized and mixed with SiC powder to fabricate highly densified SiC ceramics by hot pressing. The densification of SiC ceramics was greatly improved by the decomposition of Al4SiC4 and the formation of aluminosilicate liquid phase during the sintering process. The resulting SiC ceramics were composed of fine equiaxed grains with an average grain size of 2.0 μm and exhibited excellent mechanical properties in terms of a high flexure strength of 593 ± 55 MPa and a fracture toughness of 6.9 ± 0.2 MPa m1/2. Furthermore, the ion-irradiation damage in SiC ceramics was investigated by irradiating with 1.2 MeV Si5+ ions at 650 °C using a fluence of 1.1 × 1016 ions/cm2, which corresponds to 6.3 displacements per atom (dpa). The evolution of the microstructure was investigated by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The breaking of Si–C bonds and the segregation of C elements on the irradiated surface was revealed by XPS, whereas the formation of Si–Si and C–C homonuclear bonds within the Si–C network of SiC grains was detected by Raman spectroscopy.  相似文献   
3.
Food- and waterborne viruses, such as human norovirus, hepatitis A virus, hepatitis E virus, rotaviruses, astroviruses, adenoviruses, and enteroviruses, are major contributors to all foodborne illnesses. Their small size, structure, and ability to clump and attach to inanimate surfaces make viruses challenging to reduce or eliminate, especially in the presence of inorganic or organic soils. Besides traditional wet and dry methods of disinfection using chemicals and heat, emerging physical nonthermal decontamination techniques (irradiation, ultraviolet, pulsed light, high hydrostatic pressure, cold atmospheric plasma, and pulsed electric field), novel virucidal surfaces, and bioactive compounds are examined for their potential to inactivate viruses on the surfaces of foods or food contact surfaces (tools, equipment, hands, etc.). Every disinfection technique is discussed based on its efficiency against viruses, specific advantages and disadvantages, and limitations. Structure, genomic organization, and molecular biology of different virus strains are reviewed, as they are key in determining these techniques effectiveness in controlling all or specific foodborne viruses. Selecting suitable viral decontamination techniques requires that their antiviral mechanism of action and ability to reduce virus infectivity must be taken into consideration. Furthermore, details about critical treatments parameters essential to control foodborne viruses in a food production environment are discussed, as they are also determinative in defining best disinfection and hygiene practices preventing viral infection after consuming a food product.  相似文献   
4.
Targeting tumor vasculature through specific endothelial cell markers represents a promising approach for cancer treatment. Here our aim was to construct an antibiotic resistance gene-free plasmid encoding shRNAs to simultaneously target two endothelial cell markers, CD105 and CD146, and to test its functionality and therapeutic potential in vitro when delivered by gene electrotransfer (GET) and combined with irradiation (IR). Functionality of the plasmid was evaluated by determining the silencing of the targeted genes using qRT-PCR. Antiproliferative and antiangiogenic effects were determined by the cytotoxicity assay tube formation assay and wound healing assay in murine endothelial cells 2H-11. The functionality of the plasmid construct was also evaluated in malignant melanoma tumor cell line B16F10. Additionally, potential activation of immune response was measured by induction of DNA sensor STING and proinflammatory cytokines by qRT-PCR in endothelial cells 2H-11. We demonstrated that the plasmid construction was successful and can efficiently silence the expression of the two targeted genes. As a consequence of silencing, reduced migration rate and angiogenic potential was confirmed in 2H-11 endothelial cells. Furthermore, induction of DNA sensor STING and proinflammatory cytokines were determined, which could add to the therapeutic effectiveness when used in vivo. To conclude, we successfully constructed a novel plasmid DNA with two shRNAs, which holds a great promise for further in vivo testing.  相似文献   
5.
In this work, 0.5TRPO•0.5Gd2Zr2O7 ceramic with an average grain size of only ∼15 nm was prepared by a high pressure (5 GPa/520 °C) sintering method. Phase evolutions and microstructure changes of the as-fabricated super nano and micron-grained ceramics under a high-dose displacement damage induced by 300 keV Kr2+ ions were investigated. The results show that the super nano-grained ceramic has low degree of amorphization, obvious grain growth (2–3 times in grain size) and big Kr bubbles (10–68 nm) formation after irradiation. The micron-grained ceramic was severely amorphized after irradiation and many microcracks were formed parallel to its surface. The formation mechanism of Kr bubbles in the super nano-grained ceramic is on account of grain boundary diffusion and migration induced by the accumulation of the injecting Kr ions and irradiation defects. Nevertheless, microcracks formed in the micron-grained sample are caused by the accumulation of Kr atoms.  相似文献   
6.
In this work, praseodymium (Pr) doped cerium oxide (CeO2) was prepared using the microwave-assisted hydrothermal method (MAH) and the properties were investigated by X-ray diffraction analysis (XRD), Raman spectroscopy, Field Emission Gun Scanning Electron Microscope (FEG-SEM), BET method, Photoluminescence spectroscopy (PL), Fourier-transform infrared spectroscopy (FTIR), Ultraviolet–visible spectroscopy (UV–Vis), Electron paramagnetic resonance spectroscopy (EPR) and Magnetometry. The results showed that increasing the Pr-doping promotes a structural disorder due to increased oxygen vacancies. XRD confirmed a cubic structure without deleterious phases with modifications in the structure caused by alteration in the cerium oxidation state as well as changes in the crystallite size and strain obtained by Wellinson-Hall method. Raman spectroscopy shows that changing the Pr content results in samples with different defect densities at short range. FEG-SEM showed that the nanocrystals are agglomerated with small particles tend to aggregate spontaneously to decrease the surface energy. BET method showed that the Pr doping results in a gain of specific surface area. PL indicated that Pr3+ leads to distinct emissions; red emission associated to oxygen vacancies located near the conduction band (shallow defects), green emission associated to electron-hole recombination and orange emission associated to shallow defects and electron-hole recombination. FTIR indicated the complete process of nucleation with no other phase. UV–Vis showed the transitions between oxygen 2p, cerium 4f and praseodymium 4f states. The EPR signal shows events occurring around 344 mT. These events can be related due the presence of paramagnetic elements containing unpaired electrons, such as Ce (III), which is indicative of cerium reduction caused by Pr ions, as evidenced by Rietveld data. Regardless of the Pr concentration used in this research, the magnetic measurements show a superparamagnetic system below the blocking temperature of ~20 K and a paramagnetic system above this temperature, which indicates no significant changes in the average size of the nanoparticles. Surface area, crystallite size and the temperature are important parameters, which control the magnetic properties of such N-type semiconductors.  相似文献   
7.
《Ceramics International》2022,48(17):24383-24392
We propose a novel approach for manufacturing dual-scale porosity alumina structures by UV curing-assisted 3D plotting of a specially formulated alumina feedstock using a thermo-regulated phase separable, photocurable camphene/triethylene glycol dimethacrylate (TEGDMA) vehicle. In particular, 3D plotting process was conducted at - 5 °C, and thus an alumina suspension prepared using liquid camphene/TEGDMA at room temperature could undergo phase separation, resulting in camphene crystals surrounded by walls comprised of liquid photopolymer enclosing alumina particles. To enhance the shape retention ability of extruded filaments, polystyrene (PS) polymer was used as the tackifier. The phase-separated feedrod could be extruded favorably through a nozzle and rapidly photopolymerized by UV light during the 3D plotting process. Three-dimensionally interconnected macropores were tightly constructed, which were separated by microporous alumina filaments, where micropores were created by the removal of camphene crystals via freeze-dying. The macroporosity of porous alumina ceramics was controlled by adjusting the distance between deposited filaments, while their microporosity was kept constant, leading to tightly tailored overall porosity and mechanical properties.  相似文献   
8.
9.
本文研究设计了一种用于获取γ辐照装置辐射场和货物剂量场真实分布的新型工作模体。基于真实γ辐照装置参数构建了有效可用的模拟辐射场,提出了新型工作模体的结构和填料设计方法。采用蒙特卡罗方法和随机填充方法(RCS)模拟计算剂量计套管材料与壁厚、填料小球尺寸、空心填料小球尺寸与壁厚、小球填充方式等影响模体剂量学性能的主要因素的分布规律。在满足计算置信度的前提下,参数优化取值范围为:套管采用壁厚为3~5 mm的铝管,对辐射场干扰不超过4.372 23%;填料选择外径为1~4 cm、壁厚为1.1~11.5 mm、材料等效性好、货物密度模拟范围为0.1~0.5 g/cm3的聚丙烯小球,对辐射场干扰不超过9.998 44%;均匀填充和随机填充模式对辐射场干扰基本持平,且均不超过10%。结果表明,当前设计可行有效,投入低、兼顾参数多且量程更宽,适合推广应用。  相似文献   
10.
本文利用分子动力学方法研究了GaN在质子辐照下的损伤。对不同能量(1~10 keV)初级离位原子(PKA)引起的级联碰撞进行了研究,分析了点缺陷与PKA能量的关系、点缺陷随时间的演化规律、点缺陷的空间分布及点缺陷团簇的尺寸特征。研究结果表明,点缺陷的产生与PKA能量呈线性关系,不同类型的点缺陷随时间演化规律相似,点缺陷多产生在PKA径迹旁,点缺陷团簇多为孤立的点缺陷和小团簇。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号