首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34718篇
  免费   4928篇
  国内免费   2301篇
电工技术   962篇
综合类   2564篇
化学工业   8738篇
金属工艺   722篇
机械仪表   1301篇
建筑科学   503篇
矿业工程   1217篇
能源动力   632篇
轻工业   10099篇
水利工程   344篇
石油天然气   1229篇
武器工业   260篇
无线电   2331篇
一般工业技术   1680篇
冶金工业   1370篇
原子能技术   742篇
自动化技术   7253篇
  2024年   45篇
  2023年   670篇
  2022年   1118篇
  2021年   1412篇
  2020年   1463篇
  2019年   1158篇
  2018年   1067篇
  2017年   1250篇
  2016年   1274篇
  2015年   1496篇
  2014年   2075篇
  2013年   2591篇
  2012年   3569篇
  2011年   3143篇
  2010年   2106篇
  2009年   1991篇
  2008年   1931篇
  2007年   2472篇
  2006年   2099篇
  2005年   1685篇
  2004年   1312篇
  2003年   1112篇
  2002年   826篇
  2001年   657篇
  2000年   576篇
  1999年   457篇
  1998年   365篇
  1997年   351篇
  1996年   284篇
  1995年   250篇
  1994年   198篇
  1993年   156篇
  1992年   167篇
  1991年   104篇
  1990年   99篇
  1989年   74篇
  1988年   54篇
  1987年   58篇
  1986年   36篇
  1985年   35篇
  1984年   42篇
  1983年   27篇
  1982年   16篇
  1981年   16篇
  1980年   15篇
  1979年   8篇
  1978年   7篇
  1977年   6篇
  1974年   4篇
  1959年   16篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
采用高效液相色谱-二极管阵列检测器法(HPLC-DAD)测定西瓜中残留的膨大剂(即:氯吡脲)。西瓜样品溶于乙酸乙酯进行提取,提取物经固相萃取柱(ENVI-18)富集、净化后,在265 nm处,流动相为甲醇-水(65∶35,V∶V)条件下进行检测。结果表明,质量浓度在2.5~80.0 mg/kg范围内呈良好的线性关系,相关系数(R2)为0.999 9,样品加标回收率为95.0%~107.0%,氯吡脲的最低检测限为0.001 mg/kg,用三维光谱-色谱图进行比对,相似度高。该方法快速、灵敏、准确,专属性和特征性高,可用于西瓜中氯吡脲残留的测定。  相似文献   
2.
目的:通过对药食同源材料组合(藤茶30%、桑叶15%、菊花15%、芦根10%、麦芽10%、甘草10%和淡竹叶10%)中二氢杨梅素进行提取工艺优化,为药食同源材料开发及浸膏粉的生产提供参考。方法:先对提取次数进行考察,再以浸泡时间、加水量和提取时间为影响因素,在单因素试验的基础上,采用L9(34)正交表进行正交试验,优化水提法提取药食同源材料组合中二氢杨梅素的条件。结果:加水量对药食同源材料组合中二氢杨梅素提取量和浸膏得率具有显著影响(P<0.05),综合考虑生产的成本、时效性与稳定性,水提工艺的最优条件为加水浸泡0.5 h,提取2次,第1次加水体积为其质量的10倍提取1.5 h,第2次加水体积为其质量的8倍提取1.0 h。在最佳条件下,65 g药食同源材料组合中二氢杨梅素提取量为3 761.14 mg,浸膏得率为31.42%。结论:热水回流提取法可作为药食同源材料组合的提取方法,此法简单可行,效率高,结果准确,可用于药食同源材料组合中二氢杨梅素的提取工艺优化研究。  相似文献   
3.
晋城寺河井区煤矿采空区煤层气地面抽采关键技术研究   总被引:2,自引:0,他引:2  
随着煤层气勘探的不断深入,煤矿采空区煤层气已成为煤矿区煤层气重要资源之一。基于晋城矿区寺河井区煤矿采空区分布特征,通过地质分析、采空区煤层气成分、浓度试验和资源量模型计算等方法系统研究了煤矿采空区煤层气资源条件及地面抽采关键技术,揭示了采空区煤层气赋存规律,给出了不同赋存状态下煤层气资源量计算模型和方法,探索了煤矿采空区煤层气地面抽采关键技术。研究表明,煤矿采空区煤层气来源于煤柱及残留煤层、邻近未采煤层和围岩中的游离气和吸附气。根据吸附气和游离气资源量计算模型计算寺河井区煤层气总资源为213.016×108m3,其中游离气资源为0.102×108m3,吸附气资源为212.914×108m3。采煤方法和采空区密闭性对采空区煤层气的来源和富集程度有重要影响。针对采空区上部岩体裂隙发育特征,将采空区煤层气抽采井身结构由二开优化为三开结构,实现了二开固井封闭断裂带上部含水层,三开下入割缝套管护壁,有效解决了采空区上部含水层涌水对钻井井身稳定性影响及抽采效果等问题。在此基础上,研发了潜孔锤+压缩空气(氮气)钻井工艺,用氮气取代空气作为循环介质,形成了安全揭露含气断裂带钻井工艺技术,为采空区煤层气安全抽采探索了有效途径。  相似文献   
4.
真菌多糖具有悠久的研究历史,且生物活性广泛。茯苓多糖来源于多孔菌科真菌茯苓(Poria cocos)的菌核,具有免疫调节、抗肿瘤、抗炎、抗氧化等多种功能活性,成为近年来的研究热点。该文主要综述茯苓多糖的提取工艺、结构、功能活性、作用机理以及安全性研究进展,最后对茯苓多糖的应用前景进行展望。  相似文献   
5.
利用双水相系统同时分离火龙果皮中的天然红色素和果胶,提高火龙果皮资源的利用。以火龙果皮为原料,采用PEG/硫酸铵双水相体系分离火龙果皮中的色素和果胶。分析PEG相对分子质量、PEG质量分数、体系pH、硫酸盐质量分数4个因素对色素与果胶分离的影响。结果表明,随着双水相PEG和盐的质量分数增加,火龙果皮中的色素和果胶得率随之增加;当相比接近0.5时,上相中色素和下相中果胶获得较佳的分离。最佳的双水相分离条件为:利用质量分数16%的PEG6000,质量分数19%硫酸铵双水相体系,pH4.0,在此条件下,富集在上相的红色素和下相的果胶得率分别为1.82%±0.04%、3.68%±0.13%。因而,采用双水相萃取技术不仅可以同时分离火龙果皮中色素和果胶,还具有萃取条件温和、工艺简单、得率高的优点,本研究为火龙果皮的综合利用和开发提供了实验依据。  相似文献   
6.
一价和二价无机盐混合物溶液的分离在众多工业领域需求巨大,纳滤(NF)是新兴的一价/二价无机盐溶液分离方法,在经济性和可操作性上具有潜在优势。本文首先介绍了NF膜中离子跨膜传递机理的主流观点,分析了水合离子尺寸、膜结构、水合离子-水-膜相互作用以及进料液组成对离子跨膜传递过程的影响。接着介绍了高通量NF膜和高选择性NF膜的制备方法。并且概述了NF过程分离一价/二价无机盐溶液在资源开采、氯碱盐水脱硝、含盐废水处理、水软化和重金属离子去除领域的应用。分析了已有工作中存在的问题,并对该领域的发展前景进行了展望。  相似文献   
7.
概念格作为一种知识结构被广泛应用于现实生活中的许多方面,当数据为动态时,形式概念的更新是不可避免的,概念的更新既是知识的补充也是信息的融合。文中主要研究了在形式背景中添加单个属性或多个属性时概念的更新方法,讨论了属性约简和图的极小顶点覆盖在增添属性之后的变化情况;探讨了将动态添加属性放入决策形式背景中时,非冗余规则的提取和优化问题;在保持规则前件不变的条件下,研究了动态增加决策属性时,非冗余规则是如何变化的。  相似文献   
8.
Bulk micromachining of single-crystal SiC has been challenging due to its extreme stability both mechanically and chemically. To address this issue, a novel tool-based electrolytic plasma etching method is proposed, with which micropatterns and micro-holes are fabricated in SiC in a hydrofluoric acid-free aqueous solution with no need for masks. The material removal is the result of the combined effects of electrolytic plasma chemistry and physics. The chemistry refers to the reaction of Si with hydroxyl radical to form various SiOx and with H to form silanes, and the reactions of C to form volatile carbon oxides or hydrocarbons, all of which are accomplished and enhanced under the electrolytic plasma atmosphere. Besides, the local high temperature of plasma thermally promotes the evaporation or dissolution of SiO2 in NaOH solution. The tool-based electrolytic plasma etching method provides alternative approaches for the fabrication of SiC-based MEMS and devices.  相似文献   
9.
Algae-to-biodiesel processes are hindered by high costs and low energy return on investment.1,2. Herein, three foci in research improve algae-to-biodiesel processes by: (1) reducing high installation and energy costs in the CO2 sequestration, cultivation, and harvesting stages; (2) improving oil extraction and biodiesel generation; and (3) increasing utilization of the proteins in lipid-extracted biomass (e.g., for animal feed), as well as the omega-3 fatty acids for nutraceuticals and food supplements. A process is introduced that uses carbon dioxide to aid in all three of these foci. CO2 is used first in the form of microbubbles to lyse algae cell walls, releasing triglyceride oils. CO2 also aids with transesterification of these triglycerides using methanol. At low temperatures (353.15–368.15 K) and intermediate pressures (5–10 MMPa), carbon dioxide causes methanol to dissolve partially in the triglyceride phase and triglyceride to dissolve partially in the methanol phase, increasing the transesterification reaction rate. Due to the nondestructive nature of these processes, other metabolites can also be harvested providing improvements in both mass and economic efficiency with an overall sharp reduction in the modeled price of biodiesel.  相似文献   
10.
邹燕娣 《中国油脂》2021,46(7):143-147
为了建立一种准确性高、成本低的植物油中苯并(a)芘测定的样品前处理方法,基于GB 5009.7—2016以自制氧化铝柱为固相萃取柱,采用单因素试验对称样量、洗脱剂量、洗脱流速、吸附剂存放时间、吸附剂量这5个影响植物油中苯并(a)芘洗脱的因素进行研究,优化前处理条件,并对测定方法进行考察。结果表明:优化的前处理条件为称样量0.100 0 g、洗脱剂量120 mL、吸附剂(氧化铝)量22 g、洗脱流速1滴/2 s、吸附剂存放时间少于12周;方法检出限为0.2 μg/L,样品加标回收率为94.23%~100.00%,RSD为1.20%~7.36%;同一样品测定结果与SGS测定值接近,相对平均偏差为2.36%~3.50%。说明本试验方法测定结果准确,可应用于油脂企业植物油中痕量苯并(a)芘的测定。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号