首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22539篇
  免费   1543篇
  国内免费   619篇
电工技术   308篇
综合类   952篇
化学工业   13079篇
金属工艺   405篇
机械仪表   58篇
建筑科学   99篇
矿业工程   124篇
能源动力   1883篇
轻工业   280篇
水利工程   5篇
石油天然气   5888篇
武器工业   82篇
无线电   133篇
一般工业技术   804篇
冶金工业   443篇
原子能技术   88篇
自动化技术   70篇
  2024年   20篇
  2023年   289篇
  2022年   533篇
  2021年   639篇
  2020年   637篇
  2019年   652篇
  2018年   542篇
  2017年   602篇
  2016年   617篇
  2015年   608篇
  2014年   1164篇
  2013年   1105篇
  2012年   1261篇
  2011年   1391篇
  2010年   1098篇
  2009年   1192篇
  2008年   1037篇
  2007年   1323篇
  2006年   1332篇
  2005年   1174篇
  2004年   1056篇
  2003年   1009篇
  2002年   884篇
  2001年   843篇
  2000年   710篇
  1999年   580篇
  1998年   487篇
  1997年   340篇
  1996年   354篇
  1995年   270篇
  1994年   257篇
  1993年   173篇
  1992年   135篇
  1991年   106篇
  1990年   92篇
  1989年   57篇
  1988年   33篇
  1987年   19篇
  1986年   7篇
  1985年   15篇
  1984年   12篇
  1983年   11篇
  1982年   8篇
  1974年   1篇
  1951年   26篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(24):34828-34835
In this paper, potassium titanate whiskers was prepared via the Molten salt synthesis on the surface of cordierite ceramics for the regeneration of diesel particulate filters (DPFs). SEM, EDS, XRD, FT-IR, TG-DSC and TPO were carried out to characterize the morphology, microstructure, growth mechanism and catalytic performance of the samples. Potassium titanate whiskers with diameter (100–500 nm) and length (about 3 μm) is tightly combined with the cordierite ceramic substrate. The catalyst performance investigation demonstrates that potassium titanate whiskers decrease the soot combustion temperature apparently. The soot combustion process was studied by thermal analysis tests, and the activation energy of the combustion reaction can be calculated using Freeman-Carroll method. The carbon oxidation activation energy is 14.009 kcal/mol, and the activation energy for the catalytic reaction with potassium titanate whiskers is 6.287 kcal/mol, it can be illustrated that potassium titanate whiskers/cordierite catalyst possess excellence performance for carbon catalytic combustion. The coarseness of the interface increased because potassium titanate whiskers grew on the cordierite substrate, and the trapping ability could improve. This unique microstructure has potential application in the DPF field.  相似文献   
2.
Voltage reversal induced by hydrogen starvation can severely corrode the anode catalyst support and deteriorate the performance of proton exchange membrane fuel cells. A material-based strategy is the inclusion of an oxygen evolution reaction catalyst (e.g., IrO2) in the anode to promote water electrolysis over harmful carbon corrosion. In this work, an Ir-Pt/C composite catalyst with high metal loading is prepared. The membrane-electrode-assembly (MEA) with 80 wt% Ir-Pt(1:2)/C shows a first reversal time (FRT) of up to 20 hours, which is about ten times that of MEA with 50 wt% Ir-Pt(1:2)/C does. Furthermore, the MEA with 80 wt% Ir-Pt(1:2)/C exhibits a minimum cell voltage loss of 6 mV@1 A/cm2 when the FRT is terminated in 2 hours, in which the MEA with 50 wt% Ir-Pt(1:2)/C exhibits a voltage loss of 105 mV@1 A/cm2. Further physicochemical and electrochemical characterizations demonstrate that the destruction of anode catalyst layer caused by the voltage reversal process is alleviated by the use of the composite catalyst with high metal loading. Hence, our results reveal that the combination of OER catalyst on the Pt/C with high metal loading is a promising approach to alleviate the degradation of anode catalyst layer during the voltage reversal process for PEMFCs.  相似文献   
3.
介绍了浙江石油化工有限公司新建的3 Mt/a柴油加氢精制装置,其配套使用中国石化石油化工科学研究院有限公司开发的催化剂级配技术,并实施了可根据原料供应及市场产品需求情况灵活调整切换的2种生产技术方案。1 a的安稳生产运行结果表明:该装置以直馏柴油为主原料,通过分馏塔的馏分切割及其侧线抽出,实现了稳产国Ⅵ柴油并兼产喷气燃料技术方案的工业化应用;在实施以兼产喷气燃料为主的生产技术方案时,通过调整常一线柴油的掺炼量,不仅可以生产含硫量小于10.0 μg/g的精制柴油产品,同时兼产所得到的喷气燃料产品含硫量小于0.5 μg/g,赛波特颜色号值大于30;在实施主产精制柴油组分方案时,通过掺炼质量分数为20%~40%的催化柴油,并使所提炼得到的精制柴油组分含硫量小于6.0 μg/g的前提下,这些精制柴油组分产品既可直接作为满足国Ⅵ柴油产品出厂待售,也可作为柴油调和组分储存待用于产品的进一步优化。  相似文献   
4.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
5.
Magnetron sputtered low-loading iridium-ruthenium thin films are investigated as catalysts for the Oxygen Evolution Reaction at the anode of the Proton Exchange Membrane Water Electrolyzer. Electrochemical performance of 50 nm thin catalysts (Ir pure, Ir–Ru 1:1, Ir–Ru 1:3, Ru pure) is tested in a Rotating Disk Electrode. Corresponding Tafel slopes are measured before and after the CV-based procedure to compare the activity and stability of prepared compounds. Calculated activities prior to the procedure confirm higher activity of ruthenium-containing catalysts (Ru pure > Ir–Ru 1:3 > Ir–Ru 1:1 > Ir pure). However, after the procedure a higher activity and less degradation of Ir–Ru 1:3 is observed, compared to Ir–Ru 1:1, i.e. the sample with a higher amount of unstable ruthenium performs better. This contradicts the expected behavior of the catalyst. The comprehensive chemical and structural analysis unravels that the stability of Ir–Ru 1:3 sample is connected to RuO2 chemical state and hcp structure. Obtained results are confirmed by measuring current densities in a single cell.  相似文献   
6.
Palladium-based catalysts have been widely employed in the electro-Fenton process for in situ generation of H2O2. However, the process is still far from being practical on a large scale. In this work, a series of ClxFePd/γ-Al2O3/Al catalysts were prepared by a three-step-impregnation method. They exhibited excellent activity in H2O2 in situ synthesis and high efficiency in phenol degradation. The characterization results showed that Cl could assist in increasing the content of Pd0 and reducing the isoelectric point of catalysts, which led to the drastic promotion in the synthesis of H2O2. Theoretical calculations further demonstrated that Cl doping could facilitate the main reaction in H2O2 synthesis, as well as inhibit side reactions such as dissociation of the O O bond. Furthermore, kinetic models were proposed and fitted. A plausible reaction mechanism as well as degradation pathways were elaborated based on electron spin resonance and gas chromatography–mass spectrometry results. These findings illustrate the value of palladium-based ClxFePd/γ-Al2O3/Al catalysts for their application in the electro-Fenton process.  相似文献   
7.
Formic acid (HCOOH, FA), a common liquid hydrogen storage material, has attracted tremendous research interest. However, the development of efficient, low-cost and high-stable heterogeneous catalyst for selective dehydrogenation of FA remains a major challenge. In this paper, a simple co-reduction method is proposed to synthesize nitrogen-phosphorus co-functionalized rGO (NPG) supported ultrafine NiCoPd-CeOx nanoparticles (NPs) with a mean size of 1.2 nm. Remarkably, the as-prepared Ni0.2Co0.2Pd0.6-CeOx/NPG shows outstanding catalytic activity for FA dehydrogenation, affording a high TOF value of 6506.8 mol H2 mol Pd?1 h?1 at 303 K and a low activation energy of 17.7 kJ mol?1, which is better than most of the reported heterogeneous catalysts, and can be ascribed to the combined effect of well-dispersed ultrafine NiCoPd-CeOx NPs, modified Pd electronic structure, and abundant active sites. The reaction mechanism of dehydrogenation of FA is also discussed. Furthermore, the optimized Ni0.2Co0.2Pd0.6-CeOx/NPG shows excellent stability over 10th run with 100% conversion and 100% H2 selectivity, which may provide more possibilities for practical application of FA system on fuel cells.  相似文献   
8.
As proton-exchange membrane fuel cell technology has grown and developed, there has been increasing demand for the design of novel catalyst architectures to achieve high power density and realize wide commercialization. Herein, based on the two-dimensional biphenylene, we compare the oxygen reduction reaction (ORR) activity on the active sites with different biaxial lattice strains using first-principles calculations. The ORR free energy diagrams of biphenylene monolayers with varying lattice strains suggest that the biaxial tensile strains are unfavorable for catalytic activity. In contrast, the biaxial compressive strains could improve the catalytic performance. The biphenylene systems with the strain of ?2% ~ ?6% (S-0.02~-0.06) display overpotentials of 0.37–0.49 V. This performance is comparable to or better than the Pt (111) surface. The Bader charge transfer of adsorbed O species on various biaxial strain biphenylene catalysts could be a describer to examine the catalytic activity. The catalysts possessed the moderate transferred charge of O adsorbed species often promotes catalytic process and give the high catalysis efficiency. Overall, this work suggests that the lattice strain strategy can significantly enhance the catalytic activity of biphenylene materials and further provide guidance to design biphenylene-based catalysts in various chemical reactions.  相似文献   
9.
Two electron oxygen reduction reaction to produce hydrogen peroxide (H2O2) is a promising alternative technique to the multistep and high energy consumption anthraquinone process. Herein, Ni–Fe layered double hydroxide (NiFe-LDH) has been firstly demonstrated as an efficient bifunctional catalyst to prepare H2O2 by electrochemical oxygen reduction (2e? ORR) and oxygen evolution reaction (OER). Significantly, the NiFe-LDH catalyst possesses a high faraday efficiency of 88.75% for H2O2 preparation in alkaline media. Moreover, the NiFe-LDH catalyst exhibits excellent OER electrocatalytic property with small overpotential of 210 mV at 10 mA cm?2 and high stability in 1 M KOH solution. On this basis, a new reactor has been designed to electrolyze oxygen and generate hydrogen peroxide. Under the ultra-low cell voltage of 1 V, the H2O2 yield reaches to 47.62 mmol gcat?1 h?1. In order to evaluate the application potential of the bifunctional NiFe-LDH catalyst for H2O2 preparation, a 1.5 V dry battery has been used as the power supply, and the output of H2O2 reaches to 83.90 mmol gcat?1 h?1. The excellent electrocatalytic properties of 2e? ORR and OER make NiFe-LDH a promising bifunctional electrocatalyst for future commercialization. Moreover, the well-designed 2e? ORR-OER reactor provides a new strategy for portable production of H2O2.  相似文献   
10.
In this work, the solution plasma-assisted method was used to prepare NiMnAl-LDO (layered double oxides) catalysts with different treatment times, which were used for the CO2 methanation reaction. Solution plasma treatment can enhance the dispersibility of the catalyst, create oxygen defects and improve the chemical adsorption capacity of the catalyst. The results show that the low-temperature activity of the catalyst has been improved after the solution plasma treatment. We demonstrate that the NiMnAl-LDO-P(20) catalyst with high dispersion has the highest catalytic activity in CO2 methanation (81.3% CO2 conversion and 96.7% CH4 selectivity at 200 °C). Even though working for 70 h, the catalyst is still highly stable. This work provides a great promise for improving the low-temperature activity of Ni-based catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号