首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16338篇
  免费   3221篇
  国内免费   568篇
电工技术   95篇
综合类   620篇
化学工业   7935篇
金属工艺   2043篇
机械仪表   497篇
建筑科学   182篇
矿业工程   93篇
能源动力   145篇
轻工业   250篇
水利工程   7篇
石油天然气   23篇
武器工业   120篇
无线电   373篇
一般工业技术   7262篇
冶金工业   368篇
原子能技术   30篇
自动化技术   84篇
  2024年   3篇
  2023年   358篇
  2022年   396篇
  2021年   754篇
  2020年   662篇
  2019年   693篇
  2018年   703篇
  2017年   786篇
  2016年   944篇
  2015年   1236篇
  2014年   1051篇
  2013年   1166篇
  2012年   1035篇
  2011年   1105篇
  2010年   935篇
  2009年   948篇
  2008年   728篇
  2007年   918篇
  2006年   874篇
  2005年   711篇
  2004年   681篇
  2003年   639篇
  2002年   515篇
  2001年   391篇
  2000年   338篇
  1999年   271篇
  1998年   243篇
  1997年   185篇
  1996年   154篇
  1995年   142篇
  1994年   119篇
  1993年   71篇
  1992年   75篇
  1991年   77篇
  1990年   97篇
  1989年   70篇
  1988年   14篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1964年   1篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
1.
Nickel-graphite self-lubricating composites are a promising candidate to be used in turbine constructions that are usually exposed to high temperature oxidation and wear.However,the high-temperature stability of graphite as well as the effect that the oxide scale will play on the following wear process are still yet in debate.In this work,oxidation behavior of a NiCrAl-graphite composite and the subsequent friction and wear performances were studied.Results indicate that graphite is stable in the composites after oxidation at T≤400 ℃ for 300 h,which contributes synergistically with the thin oxide film to self-lubrication.The friction coefficient is below 0.20 and the wear rate is ~1.43×10~(-5) mm~3 N~(-1) m~(-1).The composite has the highest friction coefficient and wear rate when it was suffered from the high temperature oxidation at 500 ℃.Once it was oxidized at 600 ℃,a glaze layer would develop during the subsequent sliding.It plays a positive role in improving tribological properties though in the absence of lubricant phase of graphite,with to be exactly the friction coefficient and wear rate reduced by 13% and 21%,respectively,in comparison with the case of oxidation at 500℃.  相似文献   
2.
将冷轧Ti/Al层状复合材料在675~750 ℃下进行不同时间的退火处理,退火过程中钛和铝都保持过剩,研究了Ti/Al层状复合材料的界面微观组织演变。结果表明:Ti和Al的界面层由2个亚层组成,其中一个为紧密的TiAl3亚层,其微观结构为紧密的TiAl3层,其中分布着随机取向的充满Al的裂纹,另一个为颗粒状的TiAl3亚层,其微观组织结构是颗粒状的TiAl3分布在Al基体中。在不同的退火温度和时间条件下,紧密TiAl3亚层的厚度几乎没有变化,但是颗粒状亚层的厚度随着退火温度及时间的增加而增加;另外,界面层中的TiAl3颗粒的体积分数在不同的温度下均随着退火时间的延长而下降。因此提出了反应扩散模型来描述界面层的形成机理,在此模型中,TiAl3相是化学反应和扩散的结果,并且也考虑了TiAl3相的溶解。计算结果表明TiAl3相的形成与生长由化学反应控制,其等效厚度与退火时间之间遵循线性规律,这主要是因为Ti和Al原子能够快速地通过紧密的薄TiAl3亚层。  相似文献   
3.
C/SiC composites prepared by chemical vapor infiltration technique (CVI) have been regarded as thermal structural materials widely. However, these composites still suffer from poor functional properties like low thermal conductivity, especially in thickness direction of the composites, limiting their large-scale applications. Herein, mesophase pitch based carbon fiber (MPCF) and continuous wave laser machining were utilized to construct highly effective heat conductive micro-pipelines within CVI C/SiC composite. The effect of initial density on the final density and thermal conductivity of the as-obtained MPCF-C/SiC composites were investigated. The results revealed that higher initial density would directly enhance the thermal conductivity and reduce the negative impact of the bottle-neck effect. At temperatures between 100°C and 500°C, MPCF-C/SiC composites preserved more than threefold of the thermal conductivity (340%) when compared to reference C/SiC composites. This work provides a highly effective route for enhancing the thermal conductivity of C/SiC, which would broaden their future applications.  相似文献   
4.
High loadings of fillers are usually needed to achieve high-thermal conductivity (TC) of polymer-based composites, which inevitably sacrifices processability and meanwhile causes high-cost. Therefore, it is of great significance to achieve high-TC composites under low-filler loading. Here, a novel p-phenylenediamine (PPD) modified expanded graphite (EG-PPD)/epoxy (EP) composite with high TC and low-filler content was successfully prepared via pre-dispersion and vacuum assisted mixing strategy. With the improved interfacial compatibility between EG and EP by PPD, the prepared EG-PPD/EP composite exhibited excellent thermal management performance, resulting in the TC of which reached 4.00 W·m−1·K−1 with only 10 wt% (5.59 vol%) of EG-PPD, which is approximately 19 times higher than that of pure EP. Meantime, the interface thermal resistance of EG-PPD/EP composite between EG-PPD and EP is reduced by 33% compared with EG/EP composite. This composite with excellent TC property is expected to be used in thermal management field.  相似文献   
5.
为了提高植物蛋白基绿色高分子材料的力学性能和热稳定性能,以棉籽蛋白(CP)为原料,在尿素变性、甘油增塑、双醛淀粉(DAS)交联的基础上,将其与取向排列的天然剑麻长纤维(SF)复合,经热压硫化加工制备得到具有优异性能的棉籽蛋白/剑麻纤维全绿色复合材料。微观结构形貌和性能分析测试表明,复合材料获得改善性能主要归功于:CP基体与SF增强相间形成的紧密界面结合、对剑麻长纤维的预浸渍处理、CP与SF生物大分子间的强氢键作用。考察了不同DAS含量对复合材料力学性能和热稳定性能的影响。拉伸、热重和差示量热分析表明,经20%(质量) DAS交联的复合材料具有最优的拉伸强度(断裂应力7.5 MPa)、模量(杨氏模量93 MPa)、热稳定性(最大分解温度328℃)和玻璃化转变温度(102℃)。  相似文献   
6.
张杰  刘壮  巨晓洁  谢锐  汪伟  褚良银 《化工学报》2021,72(9):4941-4949
二维膜因其可控的结构和通道特有的物理化学性质,在气体分离、海水淡化、污水处理等诸多分离领域展现出巨大的应用潜力。通过层状Mg/Al氢氧化物(LDH)单片与聚乙烯醇(PVA)高分子链之间的氢键相互作用,层层堆叠构建了PVA/LDH复合膜。利用SEM、XRD考察了PVA与LDH的配比对于复合膜层状结构与层间距高度的影响规律。考察了PVA/LDH复合膜的纯水通量及染料模型分子的截留率。结果表明,不同PVA混合量的复合膜断面都具有层状结构。由于氢键作用导致复合膜较之于纯LDH膜的层间距有所缩小,随着PVA含量增加复合膜层间距先减小后增加;在PVA含量为15%时达到最小值,PVA含量超过15%后复合膜层间距有所增加。不同比例复合膜,以PVA质量分数为25%的复合膜的纯水通量最大;同时,该复合膜对分子量在300~800的染料分子具有优异的截留性能,截留率均超过97%。该工作为PVA/LDH复合膜在印染废水处理提供了新思路。  相似文献   
7.
Cellulose microfibers (CMFs) having surfaces modified with polydopamine (PDPA) and octadecylamine (ODA) were prepared, and their reinforcing abilities for polypropylene (PP) were investigated. The PDPA coating was made via self-polymerization of dopamine (P-CMF), and subsequent alkylation was conducted by the reaction with ODA (OP-CMF). The modified CMFs exhibited improved dispersibility in the PP matrix due to the reduced hydrophilicity. The OP-CMF/PP composite prepared by batch mixing had a higher tensile modulus compared to that for the pure PP and composites with unmodified CMFs. However, excess alkylation lowered the tensile modulus, and the presence of an optimal degree of alkylation was demonstrated. The CMF/PP-IM composites fabricated by injection molding exhibited improved tensile properties compared to those prepared by batch mixing. Both the tensile modulus and yield stress were increased by increasing the CMF content and improved by the surface modification of the CMFs.  相似文献   
8.
For the 3D printed composites, fiber alignment is affected by the direction of melt-flow during extrusion of filaments and subsequently through the printing nozzle. The resulting fibers orientation and the fiber-matrix compatibility have a direct correlation with mechanical properties. This study investigates the impact of processing conditions on the state of the carbon fiber types and their orientation on the mechanical properties of 3D-printed composites. Short and long carbon fibers were used as starting reinforcing materials, and the state of fibers at the beginning and on the printed parts were evaluated. Strong anisotropy in terms of mechanical properties (flexural and impact properties) was observed for the samples printed with different printing orientations. Interestingly, the number of voids in the printed composites was found to be correlated with the fiber types. The present work provides a step towards the optimization of tailored composite properties by additive manufacturing.  相似文献   
9.
Polyhedral oligomeric silsesquioxane (POSS) as an organic–inorganic hybrid at a molecular level, has excellent mechanical properties, thermodynamic properties, dielectric properties and so on. In recent decades, POSS has been extensively used in modification of various polymers to prepare nanocomposites with enhanced comprehensive performances. Biomass materials such as chitosan, cellulose, silk protein, collagen fibers and gelatin have excellent biocompatibility and biodegradability, which have been widely used in the fields such as biomedical, innovative environmental protection and so on. However, deficiencies including insufficient mechanical properties and rapid rate of biodegradation hampered their application. This paper briefly introduced the principal methods to synthesize POSS nanoparticles, and then focused on technologies for preparing biomass-based composites utilizing diverse functional POSSs. Finally, put forward the prospects of POSS modification technology and its future application direction. This article will have a positive guiding role for the further research and development of biomass/POSS nanocomposites.  相似文献   
10.
A detailed study of butyl rubber-based vibration damping formulations linking their composition, morphology, phase structure, viscosity, mechanical loss factor, and other characteristics is presented for the first time. High performance of the compositions including aromatic petroleum oil is explained by limited solubility of the plasticizer that leads to the formation of a highly-viscous emulsion (η20°C ≈ 1000 Pa·s) consisting of a swollen butyl rubber matrix and dispersed oil droplets in the broad composition range. Chalk is found to be the best inorganic filler as its spherical particles provide strong adhesion to the reinforcing layer of aluminum foil. Aiming to eliminate ecologically unfriendly aromatic compounds, a new low-cost binding agent formulation based on butyl rubber mixed with polyisobutylene and highly refined mineral oil is suggested. Being environmentally safe, it possesses high viscosity of 1000–3000 Pa·s, cohesion strength of 3.5–5.0 N/cm, penetration of 4.5–6.0 mm, and mechanical loss factor up to 0.34 at room temperature, which are as good as, or even better than, the properties of currently produced vibration damping materials containing aromatic compounds. New materials can be used in car and aircraft parts for effective vibration isolation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号