首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13105篇
  免费   1482篇
  国内免费   445篇
电工技术   217篇
综合类   883篇
化学工业   6020篇
金属工艺   255篇
机械仪表   272篇
建筑科学   512篇
矿业工程   117篇
能源动力   518篇
轻工业   2755篇
水利工程   150篇
石油天然气   342篇
武器工业   54篇
无线电   727篇
一般工业技术   1630篇
冶金工业   160篇
原子能技术   159篇
自动化技术   261篇
  2024年   32篇
  2023年   259篇
  2022年   400篇
  2021年   589篇
  2020年   562篇
  2019年   412篇
  2018年   393篇
  2017年   463篇
  2016年   498篇
  2015年   550篇
  2014年   818篇
  2013年   967篇
  2012年   991篇
  2011年   956篇
  2010年   612篇
  2009年   767篇
  2008年   561篇
  2007年   828篇
  2006年   751篇
  2005年   695篇
  2004年   497篇
  2003年   475篇
  2002年   404篇
  2001年   306篇
  2000年   212篇
  1999年   165篇
  1998年   123篇
  1997年   128篇
  1996年   106篇
  1995年   98篇
  1994年   76篇
  1993年   46篇
  1992年   58篇
  1991年   42篇
  1990年   24篇
  1989年   30篇
  1988年   17篇
  1987年   23篇
  1986年   14篇
  1985年   22篇
  1984年   10篇
  1983年   17篇
  1982年   18篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   3篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In both developing and industrialized/developed countries, various hazardous/toxic environmental pollutants are entering water bodies from organic and inorganic compounds (heavy metals and specifically dyes). The global population is growing whereas the accessibility of clean, potable and safe drinking water is decreasing, leading to world deterioration in human health and limitation of agricultural and/or economic development. Treatment of water/wastewater (mainly industrial water) via catalytic reduction/degradation of environmental pollutants is extremely critical and is a major concern/issue for public health. Light and/or laser ablation induced photocatalytic processes have attracted much attention during recent years for water treatment due to their good (photo)catalytic efficiencies in the reduction/degradation of organic/inorganic pollutants. Pulsed laser ablation (PLA) is a rather novel catalyst fabrication approach for the generation of nanostructures with special morphologies (nanoparticles (NPs), nanocrystals, nanocomposites, nanowires, etc.) and different compositions (metals, alloys, oxides, core-shell, etc.). Laser ablation in liquid (LAL) is generally considered a quickly growing approach for the synthesis and modification of nanomaterials for practical applications in diverse fields. LAL-synthesized nanomaterials have been identified as attractive nanocatalysts or valuable photocatalysts in (photo)catalytic reduction/degradation reactions. In this review, the laser ablation/irradiation strategies based on LAL are systematically described and the applications of LAL synthesized metal/metal oxide nanocatalysts with highly controlled nanostructures in the degradation/reduction of organic/inorganic water pollutants are highlighted along with their degradation/reduction mechanisms.  相似文献   
2.
The extensive occurrence of textile and pharmaceutical contaminants and their metabolites in water systems has posed significant concerns regarding their possible threat to human health and the environmental system. As a result, herein ZnFe2O4 nanoparticles were synthesized through the use of Monsonia burkeana plant extract. The synthesized nanoparticles were characterized using XRD, FTIR, UV–vis, SEM, EDS, TGA, BET, PL, EPR and VSM. XRD showed that the crystalline structure of ZnFe2O4 nanoparticles with a calculated crystal size of 25.03 nm was formed. FT-IR confirmed the characteristic functional groups contained within the M. burkeana plant were deposited on the formed ferrite nanoparticles. BET analysis confirmed the mesoporous nature of ZnFe2O4 with an average pore diameter of 31.6 nm. Morphological studies demonstrated that the formed nanoparticles had spherical as well as rod-like shapes. ZnFe2O4 photocatalyst illustrated that it may be effortlessly detached by an external magnetic field. The optimum conditions for the 99.8% removal of Methylene Blue was obtained at pH12, within 45min and at the optimum dosage of 25 mg of the catalyst. The as-prepared ZnFe2O4 nanoparticles proved to be easily separated and recycled, and remained efficient even after 5 reuses, proving that the material is highly stable. The ROS studies also demonstrated that electrons are the main factors contributing to the degradation of MB. Upon testing the photocatalytic performance of the sulfonamide antibiotic, sulfisoxazole in water showed a degradation of 67%. This study has shown that these materials can be used in targeting textile and pharmaceutically polluted water.  相似文献   
3.
The organic pollutants in water have been a great environment challenges to human beings, and photocatalytic degradation is an effective method to solve this problem. In this paper, the Rh-loaded cobalt ferrite CoFe2O4 (CFO) nanoparticles have been successfully synthesized by in situ photodeposition of Rh nanoparticles onto the porous CFO particles as the photocatalysts. After incorporating Rh nanoparticles, the CFO/Rh composite has a higher specific surface area and is more efficient in charge separation than the bare CFO. The photocatalytic efficiency of decomposing Malachite Green (MG) is improved from 70% over the bare CFO to 97% over the optimized CFO/Rh in 60 min. The CFO/Rh sample also demonstrates its durability for the degradation of MG in 5 photocatalytic reaction cycles. Additionally, hydroxyl radicals (?OH) and superoxide radicals (?O2?) are proved to be the crucial reactive species during the photocatalytic degradation of MG with CFO/Rh, evidenced by the active species capture experiments. This work provides a useful approach to enhance the photocatalytic activity of semiconductors for degrading organic dyes.  相似文献   
4.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
5.
In order to enhance the photocatalytic activity of TiO2 under visible light, Ag nanoparticles were introduced into tridoped B–C–N–TiO2 (TT) catalyst by photoreduction deposition. Ag/B–C–N–TiO2 (ATT) catalysts with the functions of reducing band gap and carrier recombination were prepared. At the same time, the effect of the amount of Ag on the photocatalytic performance of ATT catalyst was investigated. Through XRD, XPS, PL and other characterization methods, the (211)/(101)/Ag interface heterojunction mechanism similar to the traditional Z-scheme heterojunction was proposed. The intervention of Ag nanoparticles changed the P–N interface heterojunction between (211)/(101) to the (211)/(101)/Ag Z-scheme interface heterojunction. The results show that ATT catalyst exhibits the highest photocatalytic activity when the molar amount of Ag is 0.005% with the MB degradation rate of the ATT catalyst (0.01707 min?1), which is 14.59 times of TiO2 (0.00117 min?1) and 2.02 times of TT (0.00847 min?1). In addition, the four cycles efficiencies of ATT for MB degradation were all above 94.00%.This study reveals the possibility of construction of Z-scheme heterojunctions between precious metal nanoparticles and different interfaces of TiO2, and provides a reference for the construction of Z-scheme interface heterojunctions.  相似文献   
6.
《Ceramics International》2021,47(20):28848-28858
The construction of photocatalyst with gradient band structure is guided by the principle of band gap engineering. Rational structural design is advanced and applied to construct a new-typed peculiarly structural and functional carbon-based [TiO2/C]//[Bi2WO6/C] Janus nanofiber modified by g-C3N4 nanosheets heterostructure photocatalyst (denoted as TB-JgHP). The flexible carbon-based [TiO2/C]//[Bi2WO6/C] Janus nanofiber with one side responding to ultraviolet light and the other capturing visible light is fabricated by conjugate electrospinning, and then g-C3N4 nanosheets are uniformly grown in-situ on the surface of the Janus nanofibers by using gas-solid reaction via gasification of urea. The optimized TB-JgHP possesses remarkable hydrogen evolution efficiency (17.48 mmol h−1 g−1) and methylene blue degradation rate (99.2%) under simulated sunlight illumination for 100 min, demonstrating prominent dual-functional characteristics. The enhanced photocatalytic performance benefits from the unique Janus structure as well as the synergistic effects among the triple heterostructures of TiO2 and Bi2WO6, g-C3N4 and TiO2, g-C3N4 and Bi2WO6. The formation of gradient band structure among heterostructures is more conducive to the multi-step separation of photo-induced electron-hole pairs and more effective absorption of light. Further, flexible self-standing carbon-based photocatalysts not only have outstanding electron transport performance, but also are easy to separate from solution with preeminent recyclable stability. Based on a series of characterization techniques, it is further proved that TB-JgHP has higher carrier separation efficiency than the counterpart contrast samples. The formation mechanism of TB-JgHP is proposed, and the construction technique is established. The design philosophy and construction technique presented in this work pave a new avenue for research and development of other heterostructure photocatalysts.  相似文献   
7.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
8.
《Ceramics International》2021,47(22):31617-31624
The present work aimed to synthesize Zn0.95Ag0.05O (ZnAgO) nanoparticles using rosemary leaf extracts as a green chemistry method. The characterization of Ag-doped ZnO nanoparticles was performed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet–visible spectrophotometry (UV–visible). The XRD, FTIR, and UV–visible spectra confirmed the formation of the presence of hexagonal ZnAgO nanoparticles. FESEM micrograph shows that the nanoparticles have been distributed homogeneously and uniformly. The morphology of ZnAgO nanoparticles is quasi-spherical configuration. Also, the mean particle size is in the range of 22–40 nm. The photocatalytic degradation of methylene blue in the presence of Ag-doped ZnO nanoparticles is nearly 98.5% after exposing 100 min. The ultraviolet lamp was used as the light source for photocatalyst degradation. The disc diffusion method was chosen to study the antibacterial activity of as-synthesized ZnAgO nanoparticles. Antibacterial activity of Zn0.95Ag0.05O nanoparticles against Staphylococcus aureus and Escherichia coli revealed that the as-synthesized ZnAgO nanoparticles were efficient in inhibition of bacterial growth.  相似文献   
9.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
10.
目的 通过对广泛使用的PBAT–PLA生物降解膜袋在受控需氧堆肥条件下的降解机制研究,为生物降解塑料的大规模推广提供重要理论基础。方法 根据GB/T 19277.1—2011,在(58±2)℃需氧条件下,对PBAT–PLA膜袋进行为期160 d的生物降解测试(即工业堆肥),并以常见的可降解材料微晶纤维素作为参比样品。对降解前后的材料进行红外、扫描电镜、能谱分析,并结合其所在堆肥样本的脂肪酶活性,从多角度探寻降解机制。结果 PBAT–PLA膜袋与微晶纤维素所在的堆肥脂肪酶活性都达到空白堆肥的3倍以上。红外显示由微晶纤维素水分子吸附、糖环打开、基团氧化形成的吸收峰加强,PBAT–PLA膜袋中的酯键峰明显减弱;扫描电镜发现降解的PBAT–PLA膜袋表面覆盖了微生物膜;能谱分析发现,碳元素大幅减少,氧元素增加。结论 微生物在PBAT–PLA膜袋表面生长形成生物膜,分泌大量脂肪酶,水解PBAT–PLA的酯键,使聚合物降解为不同链长的中间体或小分子,同时伴随着氧化,随后被作为碳源,在相关微生物体内被代谢利用,形成最终产物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号