首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   9篇
化学工业   20篇
金属工艺   1篇
能源动力   1篇
轻工业   7篇
石油天然气   1篇
无线电   2篇
一般工业技术   20篇
冶金工业   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   7篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   7篇
  2005年   1篇
  2003年   3篇
  2001年   1篇
  1999年   2篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate single-domain size which gives rise to natural resonance in 2–18 GHz.The addition of MnO2 confines degree of graphitization catalyzed by iron and contributes to the formation of amorphous carbon.The heterogeneous materials composed of crystalline–amorphous structures disperse evenly and its density is significantly reduced on account of porous properties.Meanwhile,adjustable dielectric loss is achieved by interrupting Fe core aggregation and stacking graphene conductive network.The dielectric loss synergistically with magnetic loss endows the FMCA enhanced absorption.The optimal reflection loss(RL)is up to−45 dB,and the effective bandwidth(RL<−10 dB)is 5.0 GHz with 2.0 mm thickness.The proposed confinement strategy not only lays the foundation for designing high-performance microwave absorber,but also offers a general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.  相似文献   
2.
We demonstrate that the efficiency under ambient conditions of optically active molecules encapsulated in polymer nanocapsules can be significantly improved by depositing an inorganic layer onto the polymeric shell. A triplet-triplet annihilation upconversion (TTA-UC) system consisting of a porphyrin derivative and perylene is used as a representative case. Different inorganic materials are deposited on the surface of functionalized polymer nanocapsules synthesized by free-radical polymerization in miniemulsion. First, a silicate clay with formula [Si8(Mg5.45Li0.4)O20(OH)4]Na0.7 is deposited on the surface of positively charged polystyrene nanocapsules via layer-by-layer deposition. Second, controlled in situ mineralization of hydroxyapatite and cerium(IV) oxide are carried out on the surface of negatively charged polystyrene nanocapsules. In both cases the inorganic materials on the nanocapsule surface act as a scavenger and avoid the entry of oxygen from the external environment. By avoiding the entry of oxygen, the photo-oxidation process of perylene molecules is avoided within the system, and an increase in the TTA-UC properties occurs.  相似文献   
3.
Lutein was nano-encapsuled with hydroxypropylmethyl cellulose phthalate (HPMCP) to maintain its bioactivity and to avoid thermal/light degradation. Supercritical antisolvent precipitation was applied to prepare lutein/HPMCP nano-capsule. The effects of several operating parameters on the yield, lutein loading, encapsulation efficiency, particle size and particle size distribution of the nanocapsule were investigated. The mean diameter of nanocapsules ranged from 163 nm to 219 nm under appropriate experimental conditions. The result of scanning electron microscope showed that the nanocapsules were nearly spherical. The highest yield reached 95.35% when the initial concentration of lutein was saturated. The highest lutein loading of 15.80% and encapsulation efficiency of 88.41% were obtained under the conditions of 11 MPa, 40&#61616;C and CHPMCP︰Clutein 5︰l. The results may pro-mote the application of lutein in food industry.  相似文献   
4.
Carbon-coated SiC@C nanocapsules (NCs) with a hexagonal platelet-like morphology were fabricated by a simple direct current (DC) arc-discharge plasma method.The SiC@C NCs were monocrystalline,120-150 nm in size,and approximately 50 nm thick.The formation of the as-prepared SiC@C NCs included nucleation of truncated octahedral SiC seeds and subsequent anisotropic growth of the seeds into hexagonal nanoplatelets in a carbon-rich atmosphere.The disordered carbon layers on the SiC@C NCs were converted into SiO2 shells of SiC@SiO2 NCs by heat treatment at 650 ℃ in air,during which the shape and inherent characteristics of the crystalline SiC core were obtained.The interface evolution from carbon to SiO2 shells endowed the SiC@SiO2 NCs with enhanced photocatalytic activity due to the hydrophilic and transparent nature of the SiO2 shell,as well as to the photosensitive SiC nanocrystals.The band gap of the nanostructured SiC core was determined to be 2.70 eV.The SiC@SiO2 NCs degraded approximately 95% of methylene blue in 160 min under visible light irradiation.  相似文献   
5.
利用直流电弧等离子体法在甲烷气氛中制备碳包覆磁性镍纳米胶囊(Carbon-coated Ni nanocapsules,Ni(C)NCs),将它作为电磁波吸收剂,按照质量比10%、20%、30%和40%与有机石蜡基体复合,在0.1~18GHz范围内测定其复介电常数和复磁导率,并对其电磁波响应特性及吸收机制进行了研究。研究结果表明,Ni(C)纳米胶囊具有明显的极化损耗特征,其介电常数在低频范围内随频率提高而急剧衰减,而磁导率具有宽化的多重共振峰;随着Ni(C)纳米胶囊添加量的增加,其介电常数逐渐增加,其复磁导率实部和虚部分别在0.1~8GHz、0.1~10GHz出现增加,而在8~18GHz和10~18GHz范围内出现实部减小和虚部平缓变化的特征。根据极化、涡流以及反射损耗的理论分析,发现Ni(C)纳米胶囊以介电损耗为主,并对相关机制进行了探讨。  相似文献   
6.
Protein therapy, wherein therapeutic proteins are delivered to treat disorders, is considered the safest and most direct approach for treating diseases. However, its applications are highly limited by the paucity of efficient strategies for delivering proteins and the rapid clearance of therapeutic proteins in vivo after their administration. Here, we demonstrate a novel strategy that can significantly prolong the circulation time of therapeutic proteins as well as minimize their immunogenicity. This is achieved by encapsulating individual protein molecules with a thin layer of crosslinked phosphorylcholine polymer that resists protein adsorption. Through extensive cellular studies, we demonstrate that the crosslinked phosphorylcholine polymer shell effectively prevents the encapsulated protein from being phagocytosed by macrophages, which play an essential role in the clearance of nanoparticles in vivo. Moreover, the polymer shell prevents the encapsulated protein from being identified by immune cells. As a result, immune responses against the therapeutic protein are effectively suppressed. This work describes a feasible method to prolong the circulation time and reduce the immunogenicity of therapeutic proteins, which may promote the development and application of novel protein therapies in the treatment of diverse diseases.
  相似文献   
7.
为了解决紫杉醇在临床应用中难溶于水、毒副作用大以及生物利用率低等问题,选用生物相容性好、毒性低、可降解的天然高分子明胶为壁材,采用初生态微晶法包装,制备纳米紫杉醇胶囊,电镜结果表明,胶囊粒径100±50nm,分散均匀,囊形为球形或椭球形。  相似文献   
8.
赵晓  沙盈  安妮  梁列峰 《纺织学报》2012,33(7):69-74
本文采用细乳液聚合的方法,通过添加功能单体,合成了表面带有功能基团的聚苯乙烯/丙烯酸空心纳米胶囊。选用了十六烷(HD)及甲基异丁酮(MIBK)两种不同的疏水物质作为助稳定剂,分析了助稳定剂种类及用量对聚苯乙烯/丙烯酸共聚物颗粒形貌的影响。TEM观察发现,当单体用量与助稳定剂质量比为1:1时,可得到大量具有空心结构的粒径为100nm左右的乳胶粒子。采用MIBK作为助稳定剂制备的纳米胶囊可作为载体封装油溶性染料以合成染料/共聚物复合纳米色素,并表现出较好的光稳定性能。而HD作为助稳定剂使用时,染料无法在油相中均匀分散,最终导致无法得到稳定乳液。  相似文献   
9.
Carbon‐based nanomaterials have been developed for photothermal cancer therapy, but it is still a great challenge to fabricate their multifunctional counterparts with facile methods, good biocompatibility and dispersity, and high efficiency for cancer theranostics. In this work, an alternative multifunctional nanoplatform is developed based on carbon–silica nanocapsules with gold nanoparticle in the cavity (Au@CSN) for cancer theranostics. The encapsulated chemodrug doxorubicin can be released from the Au@CSN with mesoporous and hollow structure in a near‐infrared light and pH stimuli‐responsive manner, facilitating spatiotemporal therapy to decrease off‐target toxicity. The nanocapsules with efficient photothermal conversion and excellent biocompatibility achieve a synergistic effect of photothermal and chemotherapy. Furthermore, the nanocapsules can act as a multimodal imaging agent of computed tomography and photoacoustic tomography imaging for guiding the therapy. This new design platform can provide a promising strategy for precise cancer theranostics.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号