首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84976篇
  免费   9617篇
  国内免费   2935篇
电工技术   2670篇
技术理论   1篇
综合类   4488篇
化学工业   34564篇
金属工艺   3592篇
机械仪表   2488篇
建筑科学   4346篇
矿业工程   1836篇
能源动力   1838篇
轻工业   8330篇
水利工程   1032篇
石油天然气   3915篇
武器工业   612篇
无线电   6073篇
一般工业技术   10438篇
冶金工业   3298篇
原子能技术   724篇
自动化技术   7283篇
  2024年   118篇
  2023年   1329篇
  2022年   2417篇
  2021年   4071篇
  2020年   2449篇
  2019年   2467篇
  2018年   2659篇
  2017年   3348篇
  2016年   4664篇
  2015年   5136篇
  2014年   5937篇
  2013年   5888篇
  2012年   5279篇
  2011年   5085篇
  2010年   4054篇
  2009年   4166篇
  2008年   3758篇
  2007年   5428篇
  2006年   5467篇
  2005年   4754篇
  2004年   3452篇
  2003年   3191篇
  2002年   2520篇
  2001年   1797篇
  2000年   1399篇
  1999年   1171篇
  1998年   881篇
  1997年   632篇
  1996年   637篇
  1995年   525篇
  1994年   509篇
  1993年   365篇
  1992年   292篇
  1991年   232篇
  1990年   231篇
  1989年   145篇
  1988年   105篇
  1987年   92篇
  1986年   63篇
  1985年   94篇
  1984年   107篇
  1983年   64篇
  1982年   63篇
  1981年   47篇
  1980年   56篇
  1979年   30篇
  1966年   25篇
  1964年   34篇
  1962年   64篇
  1955年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(9):12209-12216
We report the structural, magnetic, electrical and broadband microwave absorption in La0.7Na0.3MnO3 sample synthesized by microwave (MW) irradiation (Na0.3LMO_MW) and compare them to the sample synthesized by solid-state (SS) reaction method (Na0.3LMO_SS). Single phase Na0.3LMO_MW was synthesized at 800 °C in 30 min, whereas, Na0.3LMO_SS sample was obtained by sintering at 1200 °C for 48 h. Although both these samples show ferromagnetic transition at TC ~324.8 K, the MW-synthesized sample shows distinct physical properties: broad ferromagnetic transition, smaller saturation magnetization, a large difference between the magnetic ordering and metal-insulator transition temperatures, a large high-field magnetoresistance, a table top-like magnetocaloric effect, and a large low-field microwave absorption compared to the solid state synthesized sample. These differences are suggested to arise from magnetic heterogeneity induced by smaller grain size and surface spin disorder in the MW synthesized La0.7Na0.3MnO3.  相似文献   
2.
益生菌可在肠道定植从而发挥抗炎或抗氧化活性,有利于宿主肠道健康。本实验研究了从新疆传统发酵乳制品中分离得到的8?株植物乳杆菌对大肠杆菌侵袭和过氧化氢刺激肠上皮细胞HT-29的保护作用。结果表明:在8?株植物乳杆菌中,植物乳杆菌35具有最高的黏附能力。植物乳杆菌35可通过取代、竞争、排阻的方式抑制大肠杆菌对HT-29细胞的黏附,抑制率分别为42.60%、59.17%、60.19%。植物乳杆菌35及其多糖可抑制大肠杆菌刺激HT-29细胞产生白细胞介素-8;同时保护HT-29细胞免受过氧化氢的损伤,增加超氧化物歧化酶、谷胱甘肽过氧化物酶活力水平并降低丙二醛含量。结论:植物乳杆菌35及其粗胞外多糖具有抑制大肠杆菌O157诱导的炎症性肠病的潜力。  相似文献   
3.
Higher alcohols synthesis (HAS) from syngas (CO/H2) has attracted widespread attention, while the low selectivity and poor stability of the catalysts mainly stumbled its industrial application. In the work, Ni–Co alloy nanoparticles (NPs) derived from Co1-xNixAl2O4 loaded on the SiO2 with large specific surface area were prepared; and during reaction, the highly dispersed Ni–Co alloys were self-optimized to Ni–Co alloy@Co–Co2C. Importantly, Ni–Co alloy@Co–Co2C can be regenerated through oxidation - reduction - self-optimization process. Characteristic results indicated that the structural liberalization during the reaction process inhibited the loss of Ni, regulated and balanced the dual active sites of the catalyst and the Ni–Co alloys were regenerated after the re-oxidation and re-reduction process. The optimized catalyst exhibited excellent catalytic performance, including a high total selectivity to alcohols of 39.3% and an excellent catalytic stability at 250 °C, 3.5 MPa (H2/CO = 2) and a space velocity of 6000 mL (gcat h)?1. In addition, the Ni–Co alloy@Co–Co2C catalyst after stability test could recover its original catalytic performance after re-oxidation and re-reduction. The renewable characteristics and superior catalytic performance of Ni–Co alloy@Co–Co2C made the catalyst to be one of the potential industrial catalysts for HAS.  相似文献   
4.
《Ceramics International》2022,48(10):14349-14359
The influence of heat-treatment temperatures (700 °C, 900°C, 1200 °C) on the phase, physical properties, crystallization rate, and in vitro properties of the solution combustion synthesized silicon-doped calcium phosphates (CaPs) were investigated. The thermodynamic aspects (enthalpy, entropy, and free energy) of the synthesis process and the crystallographic properties of the final samples were first predicted and then confirmed using density functional theory (DFT). Results demonstrated that the crystallization rate was controlled by the fuel(s) type (glycine, citric acid, and urea) and the amounts of Si4+ ions (0, 0.1, 0.4 mol). The highest calculated crystallization rate values of the un-doped, 0.1, and 0.4 mol Si-doped samples were 64%, 22%, 38%, respectively. The obtained results from the DFT simulation revealed that crystal growth in the direction of c-axis of hydroxyapatite (HAp) structure could change the stability of (001) surface of (HAp). Also, the computational data confirmed the adsorption of Si–OH groups on the (001) surface of HAp during the SCS process with an adsorption energy of 1.53 eV. AFM results in line with DFT simulation showed that the observed change in the surface roughness of Si-doped CaPs from 2 to 8 nm could be related to the doping of Si4+ ions onto the surface of CaPs. Besides, the theoretical and experimental investigation showed that crystal growth and doping of Si4+ ions could decrease the activation energy of oxygen reduction reaction (ORR). Furthermore, the results showed that the crystallized HAp structure could have great potential to efficiently reduce oxidative stress in human body.  相似文献   
5.
目的:探讨姜黄素的主要肠道代谢物四氢姜黄素(tetrahydrocurcumin,THC)对血小板活化和聚集的影响及其可能的分子机制。方法:在体外实验中,用不同浓度的THC(0、0.5、1、10 μmol/L)提前与健康人纯化血小板共同孵育40 min,然后加入凝血酶激活血小板2 min,用流式细胞术测定血小板表面CD62P和CD63的表达量,用酶联免疫吸附法测定血小板释放血小板因子-4(platelet factor-4,PF4)和趋化因子配体-5(chemokine ligand 5,CCL5)水平,用血小板聚集仪检测血小板释放ATP水平和血小板最大聚集率,用Western blot蛋白免疫印迹法检测血小板磷酸肌醇-3-激酶(phosphoinositide 3-kinase,PI3K)和Akt蛋白的磷酸化水平。结果:与模型组(血小板悬液中加入0.05%二甲基亚砜)相比,THC能抑制凝血酶诱导的血小板表面CD62P和CD63的表达,抑制PF4、CCL5和ATP的释放,降低血小板最大聚集率,下调PI3K和Akt蛋白的磷酸化水平,且呈浓度依赖效应,其中10 μmol/L的浓度下作用效果显著(P<0.01、P<0.001)。PI3K的特异性激动剂740 Y-P可部分逆转THC对PF4和CCL5释放和血小板聚集的抑制作用(P<0.05、P<0.01)。结论:THC具有显著抑制血小板活化和聚集的作用,其机制可能是THC可下调PI3K/Akt介导的信号通路。  相似文献   
6.
Production of methanol, as a green energy, from syngas is coming into focus. However, natural gas based methanol plants, which are used steam reforming of methane for syngas production, have a high CO2 emission resulting in the global warming. In this study, a novel process for methanol synthesis is proposed to reduce CO2 emission. In this regard, natural gas and flue gas are fed to a parallel-series system with tri and dry reforming of methane for syngas production with the optimized stoichiometric number. Then, the produced syngas is converted to methanol in a reactor. Finally, the produced methanol is purified by two distillation towers. The proposed method is compared to a referenced method in the view of technological, economic and environmental metrics. The techno-economic-environmental analysis of the processes reveals that not only the proposed method, as compared to the referenced one, increases CO2 conversion from 20.93% to 99.22%, but also it is more economical and environmentally friendly. In addition, the global warming potential of the proposed method is almost 60% lower than that for the referenced method due to the lower CO2 emission. Therefore, the proposed method can save above MUS$ 8 a year by CO2 capture.  相似文献   
7.
This study demonstrates the successful development of hybrid mesoporous siliceous phosphotungstic acid (mPTA-Si) and sulfonated poly ether ether ketone (SPEEK) as a proton exchange membrane with a high performance in hydrogen proton exchange membrane fuel cells (PEMFC). SPEEK acts as a polymeric membrane matrix and mPTA-Si acts as the mechanical reinforcer and proton conducting enhancer. Interestingly, incorporating mPTA-Si did not affect the morphological aspect of SPEEK as dense membrane upon loading the amount of mPTA-Si up to 2.5 wt%. The water uptake reduced to 14% from 21.5% when mPTA-Si content increases from 0.5 to 2.5 wt% respectively. Meanwhile, the proton conductivity increased to 0.01 Scm?1 with 1.0 wt% mPTA-Si and maximum power density of 180.87 mWcm?2 which is 200% improvement as compared to pristine SPEEK membrane. The systematic study of hybrid SP-mPTA-Si membrane proved a substantial enhancement in the performance together with further improvement on physicochemical properties of parent SPEEK membrane desirable for the PEMFC application.  相似文献   
8.
《Ceramics International》2022,48(9):11988-11997
We have studied peculiarities in the formation of single-crystalline barium titanate (BaTiO3) nanorods from a glycolate-mediated complex via a single-step hydrothermal process under different supersaturation (SR) conditions. X-ray diffraction (XRD) showed the formation of pure BaTiO3 with an SR of above 19. The tetragonality for the BaTiO3 (c/a) reached 1.013 at SR = 19–29 and dropped to 1.010 for SR = 39. According to the transmission electron microscopy (TEM) and XRD analyses, the rod-shaped particles exhibited single crystallinity and crystal growth along the [001] plane. With scanning electron microscopy (SEM), the morphological evolution from a plate-shaped intermediate precursor (SR = 6–9) to a rod-shaped product with an aspect ratio of 6–9 (SR = 19–29), and to non-polar material with an irregular structure (SR = 39), was observed. The negative slope, linear dependence of the particles’ width and length on the supersaturation level in the range SR = 19–39 was established for the first time. The replacement of the prevailing crystallization mechanism from in-situ topotactic transformation into dissolution-precipitation above SR = 19 was observed. It was shown that with a simple regulation of the SR, the structural and morphological characteristics of the obtained BaTiO3 nanoparticle can be effectively tuned.  相似文献   
9.
《Ceramics International》2021,47(20):28976-28984
In the era of Photonics, design and development of novel rare earth ion-doped quantum dots (QDs) for optoelectronic applications has gained significant interest owing to their outstanding characteristics. Simultaneously, the creation of a new class of photocatalytic materials on the nanoscale is also imperative for environmental purification. Thus, we report on wet chemical synthesis, the structural, morphological, and optical characteristics, fluorescence, and hydrogen evolution of ZnS:Eu (0, 2, 4, and 6 at%) QDs for optoelectronic and photocatalytic applications. Comprehensive structural studies depicted that Eu3+ ions were efficiently substituted into the host matrix and altered the original structure of the ZnS compound. The emission spectra of the ZnS:Eu QDs exhibited distinctive red fluorescence owing to the transition of dopant ions in 5D0 - 7F1, 5D0 - 7F2, 5D0 - 7F3, and 5D0 - 7F4 energy levels of the 4f orbital of the Eu3+ ions. Moreover, the photocatalytic properties of ZnS:Eu (6 at%) QDs possess better catalytic efficiency toward hydrogen evolution through a water splitting mechanism under simulated sunlight irradiation. The observed photocatalytic phenomenon in the synthesized samples agreed well with the luminescence properties exhibited by the QDs.  相似文献   
10.
To enhance chemical stability and suppress of aggregation of magnetite nanoparticles (MNPs), which are used as a support for thermoresponsive copolymer immobilization, silica coating of the MNPs is applied via the electrooxidation method. Although the resulting silica coated-MNPs also formed aggregates, the size distribution of the aggregate shifted to smaller size range. Because of that, the surface area available for copolymer immobilization increased approximately 6.7 times at maximum as compared with that of the uncoated MNPs. It contributed to the increase of the amount of the immobilized copolymer on the silica-coated MNPs, which is approximately four times larger than that on the uncoated MNPs. Fe3O4 dissolution test confirmed enhancement of chemical stability of MNPs. The thermoresponsive copolymer immobilized on the silica-coated MNPs shows the ability to recycle Cu(II) ion from Cu(II) containing solution by changing temperature with significantly shorter time than those in other thermoresponsive adsorbents in gel form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号