首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34842篇
  免费   4156篇
  国内免费   1425篇
电工技术   663篇
技术理论   2篇
综合类   2021篇
化学工业   13314篇
金属工艺   1632篇
机械仪表   834篇
建筑科学   1794篇
矿业工程   810篇
能源动力   928篇
轻工业   3993篇
水利工程   358篇
石油天然气   2185篇
武器工业   370篇
无线电   3429篇
一般工业技术   6089篇
冶金工业   1162篇
原子能技术   216篇
自动化技术   623篇
  2024年   93篇
  2023年   864篇
  2022年   896篇
  2021年   1344篇
  2020年   1343篇
  2019年   1222篇
  2018年   1139篇
  2017年   1306篇
  2016年   1302篇
  2015年   1333篇
  2014年   2052篇
  2013年   2163篇
  2012年   2531篇
  2011年   2670篇
  2010年   1991篇
  2009年   2083篇
  2008年   1654篇
  2007年   2308篇
  2006年   2164篇
  2005年   1860篇
  2004年   1552篇
  2003年   1303篇
  2002年   986篇
  2001年   869篇
  2000年   670篇
  1999年   545篇
  1998年   400篇
  1997年   360篇
  1996年   266篇
  1995年   233篇
  1994年   195篇
  1993年   134篇
  1992年   130篇
  1991年   99篇
  1990年   63篇
  1989年   44篇
  1988年   32篇
  1987年   30篇
  1986年   27篇
  1985年   33篇
  1984年   19篇
  1983年   24篇
  1982年   20篇
  1981年   5篇
  1980年   10篇
  1979年   6篇
  1975年   3篇
  1974年   7篇
  1955年   2篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(20):30393-30406
Plasma methods are efficient processing for metal recovery from metal scrap, bearing minerals, electronic waste, etc. In this work, pure titanium nitride nanoparticles (TiN NPs) were synthesized from titanium scraps by the thermal plasma arc discharge (TPAD) method. TPAD synthesized TiN NPs have a highly crystalline nature with cubic and spherical morphologies with average particle sizes of 30–100 nm. Further, prepared TiN NPs involving surface modification (SM) or etching processes were investigated by using the non-thermal DC glow discharge plasma technique with air atmosphere at different processing times. SM@TiN NPs have a comparatively low crystalline, which was confirmed from the powder X-ray diffraction technique. SM@TiN NPs have very interesting core shell morphologies, which are due to the surface interactions of ionized air molecules. TiN and SM@TiN NPs have room-temperature ferromagnetic properties with high saturation magnetization (Ms) up to 2.6 and 3.0 emu/g and very high coercivity (Hc) of 235.5 Oe, respectively. TiN and SM@TiN NPs have superior energy storage performance with an outstanding specific capacitance of 192.8 and 435.1 F/g at a current density of 2 A/g with pseudocapacitive behavior. These results reveal that TiN and SM@TiN NPs have highly promising electrodes for supercapacitor applications.  相似文献   
2.
Metal-organic frameworks (MOFs) have emerged as efficient electrocatalysts due to the features of high specific surface area, rich pore structure and diversified composition. It is still challenging to synthesize self-supporting MOF-based catalysts using simple and low-cost fabrication methods. Herein, we successfully fabricated Ni-doped MIL-53(Fe) supported on nickel-iron foam (Ni-MIL-53(Fe)/NFF) as efficient electrocatalyst. A facile two-step solvothermal method without adding any metal salts was used, which can simplify the fabrication process and reduce the experimental cost. In the fabrication process, the bimetallic Ni-MIL-53(Fe)/NFF was in situ converted from an intermediate NiFe2O4/NFF. The obtained material exhibits outstanding electrocatalytic oxygen evolution performance with a low overpotential of 248 mV at 50 mA cm?2, and a small Tafel slope of 46.4 mV dec?1. This work sheds light on the simple and efficient preparation of bimetallic MOF-based material, which is promising in electrocatalysts.  相似文献   
3.
《Ceramics International》2022,48(7):9124-9133
The main obstacles in lithium-ion battery are limited by rate performance and the rapid capacity fading of LiNi0.8Co0.1Mn0.1O2 (NCM811). Herein, a novel three-dimensional (3D) hierarchical coating material has been fabricated by in situ growing carbon nanotubes (CNTs) on the surfaces of Ni–Al double oxide (Ni–Al-LDO) sheets (named as LDO&CNT) with Ni–Al double hydroxide (Ni–Al-LDH) as both the substrate and catalyst precursor. The resultant LDO&CNT nanocomposites are uniformly coated on the surfaces of NCM811 by the physical mixing method. The rate capability of the resultant cathode material retains to 78.80% at a current rate of 3C. Its capacity retention increases by 6.7–14.42% compared with pristine NCM811 after 100 cycles within a potential range of 2.75–4.3 V at 0.5C. The improved rate capability and cycle performance of NCM811 are assigned to the synergistic effects between Ni–Al-LDO and CNTs. The hierarchical LDO&CNT nanocomposites coating on the surface of NCM811 avoids the aggregation of conductive CNTs and the stacking of Ni–Al-LDO nanosheets. Furthermore, it accelerates Li+ and electrons shuttle and reduces the reaction of Li2O with H2O and CO2 in air, which results in Li2CO3 and LiOH alkali formation on the NCM811 surface.  相似文献   
4.
Resistant starch (RS) can be generated through heat moisture treatment (HMT). The HMT was conducted by modifying starch using different ratio of moisture content, high temperature and heating time. A number of studies showed that the effects of HMT on RS contents in cereals, pulses, tubers and fruits were inconsistent. This study aimed to analyse the impact of HMT on RS level in various carbohydrate sources through a meta-analysis approach. Study selection was conducted with the PRISMA method. There were 21 relevant studies and 67 data used for meta-analysis. The database was analysed by using Hedges’ d. The results showed that there was a significant impact of HMT on RS level of cereals, especially wheat. The highest increase in RS levels for various carbohydrate sources in starch was influenced by the interaction of treatment between water content at 15 ≤ x < 25%, heating time at 0.25 < x ≤ 6 h and temperature at 120 ≤ x ≤ 130 °C.  相似文献   
5.
A micromembrane adsorber with deep-permeation nanostructure (DPNS) has been successfully fabricated by flowing synthesis. The nanoparticles are in-situ assembled in membrane pores and immobilized in each membrane pore along the direction of membrane thickness. The nanoparticles with a lower size and thinner size distribution can be achieved owing to the confined space effect of the membrane pores. As a concept-of-proof, the nano ZIF-8 and ZIF-67 are fabricated in porous membrane pores for methyl orange (MO) and rhodamine B (RhB) adsorption. The adsorption rate is increased significantly owing to the enhanced contact and mass transfer in the confined space. The adsorption capacity for the RhB is also increased, since the size of the nanoparticles assembled in membrane pores is smaller with more active sites exposed. This micromembrane adsorber with DPNS has good reusability and can provide a promising prospect for industrial application.  相似文献   
6.
Computational screening was employed to calculate the enantioseparation capabilities of 45 functionalized homochiral metal–organic frameworks (FHMOFs), and machine learning (ML) and molecular fingerprint (MF) techniques were used to find new FHMOFs with high performance. With increasing temperature, the enantioselectivities for (R,S)-1,3-dimethyl-1,2-propadiene are improved. The “glove effect” in the chiral pockets was proposed to explain the correlations between the steric effect of functional groups and performance of FHMOFs. Moreover, the neighborhood component analysis and RDKit/MACCS MFs show the highest predictive effect on enantioselectivities among the four ML classification algorithms with nine MFs that were tested. Based on the importance of MF, 85 new FHMOFs were designed, and a newly designed FHMOF, NO2-NHOH-FHMOF, with high similarity to the optimal MFs achieved improved chiral separation performance, with enantioselectivities of 85%. The design principles and new chiral pockets obtained by ML and MFs could facilitate the development of new materials for chiral separation.  相似文献   
7.
Organic solar cells (OSCs) have recently reached a remarkably high efficiency and become a promising technology for commercial application. However, OSCs with top efficiency are mostly processed by halogenated solvents and with additives that are not environmentally friendly, which hinders large-scale manufacture. In this study, high-performance tandem OSCs, based on polymer donors and two small-molecule acceptors with different bandgaps, are fabricated by solution processing with non-halogenated solvents without additive. Importantly, the two active layers developed from non-halogenated solvents show better phase segregation and charge transport properties, leading to superior performance than halogenated ones. As a result, a tandem OSC with high efficiency of up to 16.67% is obtained, showing unique advantages in future massive production.  相似文献   
8.
Recent studies have demonstrated that dihydrophenazine (Pz) with high redox-reversibility and high theoretical capacity is an attractive building block to construct p-type polymer cathodes for dual-ion batteries. However, most reported Pz-based polymer cathodes to date still suffer from low redox activity, slow kinetics, and short cycling life. Herein, a donor–acceptor (D–A) Pz-based conjugated microporous polymer (TzPz) cathode is constructed by integrating the electron-donating Pz unit and the electron-withdrawing 2,4,6-triphenyl-1,3,5-triazine (Tz) unit into a polymer chain. The D–A type structure enhances the polymer conjugation degree and decreases the band gap of TzPz, facilitating electron transportation along the polymer skeletons. Therefore the TzPz cathode for dual-ion battery shows a high reversible capacity of 192 mAh g−1 at 0.2 A g−1 with excellent rate performance (108 mAh g−1 at 30 A g−1), which is much higher than that of its counterpart polymer BzPz produced from 1,3,5-triphenylbenzene (Bz) and Pz (148 and 44 mAh g−1 at 0.2 and 10 A g−1, respectively). More importantly, the TzPz cathode also shows a long and stable cyclability of more than 10 000 cycles. These results demonstrate that the D–A structural design is an efficient strategy for developing high-performance polymer cathodes for dual-ion batteries.  相似文献   
9.
A series of tetrathiophene-based fully non-fused ring acceptors (4T-1, 4T-2, 4T-3, and 4T-4), which can be paired with the star donor polymer PBDB-T to fabricate highly efficient organic solar cells are developed. Tailoring the size of lateral chains can tune the solubility and packing mode of acceptor molecules in neat and blend films. It is found that the incorporation of 2-ethylhexyl chains can effectively change the compatibility with the donor polymer PBDB-T, and an encouraging power conversion efficiency of 10.15% is accomplished by 4T-3-based organic solar cells. It also presents good compatibility with the other polymer donor and an even higher power conversion efficiency (PCE) of 12.04% is achieved based on D18:4T-3 blend, which is the champion PCE for the fully non-fused acceptors. Importantly, these inexpensive tetrathiophene fully non-fused ring acceptors provide cost-effective photovoltaic performance. The results demonstrate a high photovoltaic performance from synthetically inexpensive materials could be achieved by the rational design of non-fused ring acceptor molecules.  相似文献   
10.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号