首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   17篇
  国内免费   5篇
综合类   45篇
化学工业   176篇
金属工艺   5篇
机械仪表   2篇
建筑科学   4篇
矿业工程   1篇
能源动力   2篇
轻工业   22篇
水利工程   1篇
石油天然气   16篇
无线电   12篇
一般工业技术   24篇
冶金工业   5篇
原子能技术   6篇
自动化技术   2篇
  2024年   2篇
  2023年   2篇
  2022年   5篇
  2021年   4篇
  2020年   8篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   11篇
  2015年   13篇
  2014年   11篇
  2013年   17篇
  2012年   20篇
  2011年   15篇
  2010年   17篇
  2009年   28篇
  2008年   13篇
  2007年   14篇
  2006年   15篇
  2005年   9篇
  2004年   11篇
  2003年   7篇
  2002年   11篇
  2001年   16篇
  2000年   13篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   8篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有323条查询结果,搜索用时 15 毫秒
1.
以某储备库30号高大平房仓为实验仓,用聚苯乙烯泡沫板对粮面进行压盖密闭,辅以食品级惰性粉粮面30 cm以下拌药,实现了PH3膜下低浓度环流熏蒸。与采用传统熏蒸技术的相同仓型对28号对照仓房相比,30号实验仓房用药量为20 kg,相比减少37.5%,PH3浓度半衰期延长一倍以上,达到19 d,PH3在设定浓度以上150 mL/m3保持28 d以上。相比28号对照仓杀虫率在45%~65%之间,30号实验仓杀虫率达到100%。说明压盖后的膜下环流熏蒸不仅可以减少磷化铝使用量,还可以大大提高对高抗性害虫锈赤扁谷盗的杀灭效果,达到磷化铝减量增效的目的。  相似文献   
2.
以猪场原液和沼液作为研究对象,在遮光密闭的环境中,于厌氧序批式反应器(ASBR)内利用钼酸铵分光光度法分别测定单位时间内不同COD和TP浓度下PH3的产生量。结果表明:猪场原液和沼液PH3释放量分别达0.048、0.033 mg/h;COD和TP都能促进磷化氢的产生。  相似文献   
3.
Palladium(II) acetate in association with secondary phosphine oxides provides an efficient catalytic system for [2+1] cycloadditions starting from oxanorbornene derivatives and tertiary propargyl esters giving rise to vinylidenecyclopropanes. This reaction is specific to bidentate phosphinito–phosphinous acid ligands generated from secondary phosphine oxides. The [2+1] cycloaddition was found broad in scope with a high tolerance to various functional groups. Moreover, vinylidenecyclopropanes were straightforwardly converted into oxabicyclo[3.2.1]oct‐2‐ene derivatives through a palladium‐catalyzed ring‐expansion. Finally, the oxa bridge cleavage of oxatricyclic compounds yields functionalized 7‐membered carbocycles.

  相似文献   

4.
Isostearic acids (IA) are highly utilized for industrial purposes especially in the area of biolubricants, such as cosmetics and slip additives for polyolefin and related copolymer films. This study was designed to develop a zeolitic catalysis process for efficient IA production through isomerization of fatty acids. The process utilized zeolite protonated Ferrierite with a small amount of base additive to neutralize (i.e., poison) the acidic sites on the external surfaces of the zeolite particles to prevent side reactions. Of the six base additives examined, the proton sponge combined with the zeolite protonated Ferrierite was found to be the most effective for this isomerization. With only 0.5 wt% proton sponge additive to 5.0 wt% Ferrierite, the dimers were successfully suppressed from 20.6 wt% yield to 2.42 wt% with an IA yield of 83.4 wt% and a 98 % conversion.  相似文献   
5.
Two wide band gap functional compounds of phenylbis(4-(spiro [fluorene-9,9'-xanthen]-2-yl)phenyl)phosphine oxide (2SFOPO) and (4-(9-ethyl-9H- carbazol-3-yl)phenyl)(phenyl)(4-(spiro[fluorene-9,9′-xanthen]-2-yl)phenyl)phosphine oxide (SFOPO-CZ) were designed, synthesized and characterized. Their thermal, photophysical, electrochemical properties and device applications were further investigated to correlate the chemical structure of bipolar host materials with the electroluminescent performance for phosphorescent organic light-emitting diodes (PhOLEDs). Both of them show high thermal stability with glass transition temperatures in a range of 105–122 °C and thermal decomposition temperatures at 5% weight loss in a range of 406–494 °C. The optical band gaps of compound 2SFOPO and SFOPO-CZ in CH2Cl2 solution are 3.46 and 3.35 eV, and their triplet energy levels are 2.51 eV and 2.52 eV, respectively. The high photoluminescent quantum efficiency of emissive layer of doped green device up to 50% is obtained. Employing the developed materials, efficient green and red PhOLED in simple device configurations have been demonstrated. As a result, the green PhOLEDs of compound SFOPO-CZ doped with tris(2-phenylpyridine) iridium shows electroluminescent performance with a maximum current efficiency (CEmax) of 52.83 cd A−1, maximum luminance of 34,604 cd/m2, maximum power efficiency (PEmax) of 39.50 lm W−1 and maximum external quantum efficiency (EQEmax) of 14.1%. The red PhOLED hosted by compound 2SFOPO with bis(2-phenylpyridine)(acetylacetonato) iridium(III) as the guest exhibits a CEmax of 20.99 cd A−1, maximum luminance of 33,032 cd/m2, PEmax of 20.72 lm W−1 and EQEmax of 14.0%. Compound SFOPO-CZ exhibits better green device performance, while compound 2SFOPO shows better red device performance in PhOLEDs.  相似文献   
6.
铑催化线性氢甲酰化反应的研究进展   总被引:1,自引:0,他引:1  
《石油化工》2015,44(10):1149
介绍了氢甲酰化反应机理;综述了线性氢甲酰化配体的发展过程,包括双齿膦配体、三齿膦配体及四齿膦配体,双齿膦配体中重点介绍了Bisbi系列配体、Xantphos系列配体和具有大位阻的含亚磷酸酯键的Biphephos系列配体的结构及应用;并从配体的设计出发,简要地介绍了氢甲酰化的机理和影响线性氢甲酰化反应选择性的因素。对如何推动我国线性氢甲酰化工业的发展提出了展望。  相似文献   
7.
Alkyldiphenylphosphine oxides typically undergo α‐deprotonation with alkyllithium reagents. Here, the lithiation of differentially branched alkyldiphenylphosphine oxides was investigated and a diverse, but predictable reactivity was found. γ‐Branched derivatives undergo selective directed ortho‐metalation (DoM) using butyllithium and TMEDA as an additive. With decreasing degree of γ‐branching α‐lithiation becomes predominant. The ortho‐phosphinoyllithium intermediates are subject to functionalization and C C bond forming reactions, thus providing a convenient approach to new phosphine oxides and phosphine‐borane complexes, which have a good potential for an approach to new ligands for catalysis.

  相似文献   

8.
浅圆仓磷化氢环流熏蒸生产性杀虫试验   总被引:1,自引:0,他引:1  
主要介绍了浅圆仓环流熏蒸生产性杀虫试验效果.试验表明对不同虫情的粮食,其熏蒸浓度应控制在100~200mL/m3范围,密闭15~25d,可取得较好的杀虫效果.此外,在采用环流熏蒸时,还要考虑产气方式的简便性、经济性等问题.  相似文献   
9.
季鏻盐杀菌剂的合成新方法与杀菌特性研究   总被引:1,自引:0,他引:1  
研究了季鏻盐合成的新方法,包括格氏试剂、三丁基膦和鏻盐的合成方法。该方法的特点是可将溶剂回收再利用,提高了溶剂的使用效率;并且采用新的控制步骤使产品收率达70%,可实现工业化生产。  相似文献   
10.
综述了乙烯四聚制1-辛烯催化体系中配体双膦胺(PNP)的研发现状,分析了PNP结构对铬系催化剂体系催化作用的影响。重点介绍了PNP由单核向双核、三核的开发进程,并讨论了其结构对催化剂稳定性、活性和选择性的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号