首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   96篇
  国内免费   10篇
电工技术   11篇
综合类   27篇
化学工业   293篇
金属工艺   29篇
机械仪表   5篇
建筑科学   1篇
矿业工程   2篇
能源动力   20篇
轻工业   38篇
石油天然气   2篇
武器工业   1篇
无线电   64篇
一般工业技术   184篇
冶金工业   1篇
自动化技术   14篇
  2024年   1篇
  2023年   8篇
  2022年   12篇
  2021年   26篇
  2020年   23篇
  2019年   26篇
  2018年   21篇
  2017年   32篇
  2016年   34篇
  2015年   33篇
  2014年   32篇
  2013年   42篇
  2012年   59篇
  2011年   38篇
  2010年   18篇
  2009年   31篇
  2008年   31篇
  2007年   37篇
  2006年   31篇
  2005年   29篇
  2004年   29篇
  2003年   20篇
  2002年   14篇
  2001年   11篇
  2000年   7篇
  1999年   6篇
  1998年   16篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1986年   1篇
  1984年   1篇
排序方式: 共有692条查询结果,搜索用时 31 毫秒
1.
A model cancer cell line was used to initiate polymerisation of pyrrole to form the conducting material polypyrrole. The polymerisation was shown to occur through the action of cytosolic exudates rather than that of the membrane redox sites that normally control the oxidation state of iron as ferricyanide or ferrocyanide. The data demonstrate for the first time that mammalian cells can be used to initiate synthesis of conducting polymers and suggest a possible route to detection of cell damage and/or transcellular processes through in situ and amplifiable signal generation.  相似文献   
2.
王博  凡力华  原韵  殷允杰  王潮霞 《纺织学报》2020,41(10):101-106
为赋予棉针织物导电和储电的新功能并将其用于可穿戴器件中,将吡咯单体原位聚合到棉针织物上。借助扫描电子显微镜和红外光谱仪对棉针织物和聚吡咯的微观形貌以及化学结构进行表征,并测试了聚吡咯/棉针织物在不同拉伸应变时的表面电阻及电化学性能。结果表明:聚吡咯充分附着在针织棉纤维上;当拉伸应变从0%增至40%时,织物电阻值从429.2 Ω降至231.4 Ω;织物在5 mV/s条件下的储电面积容量为680.6 mF/cm 2,在2 mA/cm2 条件下为1 014.2 mF/cm2;由聚吡咯/棉针织物组装成的对称型超级电容器在1、5 mA/cm2时的面积容量分别为229.8、161.5 mF/cm2,经过10 000次恒流充放电循环后容量保留率为76.3%。  相似文献   
3.
纳米纤状聚吡咯导电涂料的制备与性能研究   总被引:1,自引:0,他引:1  
以十六烷基三甲基溴化铵(CTAB)胶束作为软模版,过硫酸铵(APS)为氧化剂制备纳米纤状聚吡咯(C-PPy)导电聚合物;利用电子转移再生催化剂原子转移自由基聚合(ARGET-ATRP)法合成羟基丙烯酸酯氟树脂,对其结构、形貌进行表征。将C-PPy与氟化丙烯酸酯树脂、固化剂复合,制成复合导电涂料,测试涂层力学性能与导电性能。实验结果表明:当C-PPy用量占涂料体系的质量分数为15%时,复合涂层的耐冲击性提高约133%,导电性能达到0.006 S/cm,涂层综合性能优异。  相似文献   
4.
In the present investigation, Greigite-conducting polypyrrole nanocomposite (GPPy nanocomposite) was prepared, characterized and used to remove arsenite and arsenate from aqueous solution. Fe3S4 was synthesized using solvothermal synthetic method and it was grafted to conducting polypyrrole matrix. The nanocomposite was characterized using FE-SEM, EDX, XRD, FTIR, TGA/DSC and BET surface area. Kinetic studies revealed that the removal process followed first order kinetics. Batch isotherm studies were performed to determine the binding capacity. Thermodynamic parameters were also computed and it indicated the spontaneous nature of the process. Electrophoretic studies were carried out to determine the point of zero charge.  相似文献   
5.
Palmyra (Borassus flabellifer L.) is one of the natural fruit fibers that are available in plenty. This fiber has many advantages, such as biodegradability, renewability, low density, and low cost, which offer greater opportunities to develop new applications. Imparting electrical conductivity to this fiber may open up avenues for various novel applications. In the present study, Palmyra fibers are made electro-conductive by in situ chemical polymerization of pyrrole with FeCl3 oxidant and PTSA dopant. Prepared electro-conductive fibers show average electrical resistivity 2.96 kΩ cm?1. A positive correlation is found between fiber-length and electrical resistance, whereas a negative correlation is found in between fiber-diameter and electrical resistance. FTIR study is conducted to understand the chemical interaction between lingo-cellulose and polypyrrole. Tensile properties and thermal degradation behavior of the prepared electro-conductive fibers are evaluated, and significant deterioration of both tensile properties and thermal stability is observed. Due to this reason, these electro-conductive fibers are unsuitable for mechanical processing and high-tech applications. But the response of these fibers in different pH solution is investigated, and their possible application as a pH sensor has been explored.  相似文献   
6.
A flexible polypyrrole composite material with good dielectric properties was produced, using pyrrole as the monomer, by in situ polymerization on cotton fabric. Firstly, the influence of pyrrole concentration on the dielectric constant of the real part and imaginary part, loss tangent, and surface resistance of composite material are discussed. Secondly, exterior morphology of the polymerized cotton surface was analyzed. The results show that the concentration of pyrrole has great influence on the dielectric constant of the real part and imaginary part, loss tangent, and surface resistance of the composite material. The produced polypyrrole composite displays good dielectric properties and conductivity performance.  相似文献   
7.
We report the preparation of a polypyrrole/graphene oxide/zinc oxide nanocomposite on a nickel foam using a simple and rapid single‐step electrochemical deposition process under ambient conditions. A free‐standing flexible supercapacitor was fabricated by sandwiching a polyvinyl alcohol hydrogel polymer electrolyte between two layers of the as‐prepared ternary nanocomposite electrodes. The electrochemical properties of the free‐standing supercapacitor were analyzed using a two‐electrode system. The supercapacitor achieved a specific capacitance of 123.8 F/g at 1 A/g, which was greater than its single (39.1 F/g) and binary (81.3 F/g) counterparts. This suggests that ZnO acts as a spacer and support that hinders the ternary structure from collapsing and subsequently enhances the diffusion of ions within the matrix. The flexible supercapacitor exhibited remarkable electrochemical stability when subjected to bending at various angles. The cycling stability of the ternary nanocomposite showed a favorable specific capacitance retention of more than 90% after 1000 cycles for mild alkaline electrolytes compared with strong alkali electrolytes. The presence of glycerin in the polymer electrolyte enabled the supercapacitor to perform better under the vigorous cycling condition. The potential of the as‐fabricated supercapacitor for real applications was manifested by its ability to light up a light‐emitting diode after being charged. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
郭齐香  谢强  刘威  李实  张磊  陈厚和 《材料导报》2018,32(Z1):133-136
为研究制备纳米银-聚吡咯(Ag-PPy)导电复合薄膜的最佳聚合工艺,分别采用静置、超声和磁力搅拌三种聚合工艺制备了纳米银-聚吡咯导电复合薄膜。用四探针法测量了复合薄膜的表面电阻值,用三维视频显微镜(3-DVM)观测其表面形貌并测定了膜层的厚度,用X射线衍射仪(XRD)分析了膜层物质的晶型。结果表明:采用频率为25kHz、功率为70 W的超声工艺制备的Ag-PPy导电复合薄膜的综合性能最好,在该条件下得到的复合薄膜表面平整,纳米银粒子在聚吡咯中分布连续且均匀,表面电阻值可达到0.68kΩ,复合物粒子在基体上沉积的厚度为56.28μm,沉积速率为8.67mg·cm-2·h-1。  相似文献   
9.
New copolymer materials have been prepared by chemical grafting of oligomeric 3‐hydroxybutyric acid (OHB) onto polypyrrole (PPy) derivatives. The influence of grafting density and molecular weight of OHB brushes on the physicochemical properties of prepared copolymers was investigated. PPy substrates were prepared by FeCl3‐driven oxidative homopolymerization of N‐(2‐carboxyethyl)pyrrole or its copolymerization with pyrrole. The grafting method employed involved controlled anionic polymerization of β‐butyrolactone on pyrrole‐tethered potassium carboxylate active sites. Obtained PPy‐g‐OHB copolymers of varying grafting density and pendant polyester chain length were characterized and the observed structure–property relationships discussed. The impact of real time exposure to phosphate‐buffered saline environment was investigated and the residue products were characterized. Cross‐correlation of spectroscopic, thermal, electrical and elemental analysis data afforded comprehensive evaluation of the structure of prepared materials and their behaviour in hydrolytic medium. Erosion and degradation pathways have been identified, indicating ways to consciously tailor the physicochemical properties of these new biomimetic materials. © 2016 Society of Chemical Industry  相似文献   
10.
Nanocolloidal polypyrrole (PPy):poly(styrene sulfonate) (PSS) particles were synthesized by chemical oxidative polymerization using 15 wt% of PSS. The highly processable polymer composite (PPy:PSS) was spin‐coated at 4000 rpm on fluorine‐doped tin oxide glass and subsequently employed as a counter electrode (CE) for dye‐sensitized solar cells (DSCs). PPy:PSS multilayer (one, three, five) CEs were treated with CuBr2 salt, which enhances the efficiency of the DSCs. Optical studies reveal that a bulkier counterion hinders interchain interactions of PPy which on salt treatment shows a moderate redshift in absorption maxima. Salt‐treated PPy:PSS films exhibit lower charge transfer resistance, higher surface roughness and better catalytic performance for the reduction of I3?, when compared with untreated films. The improved catalytic performance of salt‐treated PPy:PSS multilayer films is attributed to charge screening and conformational change of PPy, along with the removal of excess PSS. Under standard AM 1.5 sunlight illumination, salt treatment is shown to boost the efficiency of multilayer PPy:PSS composite film‐based DSCs, leading to enhanced power conversion efficiency of 6.18, 6.33 and 6.37% for one, three and five layers, respectively. These values are significantly higher (ca 50%) than those for corresponding devices without CuBr2 salt treatment (3.48, 2.90 and 2.01%, respectively). © 2016 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号