首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45849篇
  免费   4929篇
  国内免费   2641篇
电工技术   1661篇
技术理论   5篇
综合类   3022篇
化学工业   15335篇
金属工艺   2556篇
机械仪表   966篇
建筑科学   2038篇
矿业工程   1283篇
能源动力   4564篇
轻工业   3266篇
水利工程   684篇
石油天然气   2321篇
武器工业   362篇
无线电   2081篇
一般工业技术   4704篇
冶金工业   3505篇
原子能技术   761篇
自动化技术   4305篇
  2024年   76篇
  2023年   1288篇
  2022年   1712篇
  2021年   1903篇
  2020年   2000篇
  2019年   1777篇
  2018年   1523篇
  2017年   1730篇
  2016年   1631篇
  2015年   1573篇
  2014年   2576篇
  2013年   2875篇
  2012年   3224篇
  2011年   3550篇
  2010年   2630篇
  2009年   2708篇
  2008年   2392篇
  2007年   2783篇
  2006年   2385篇
  2005年   1909篇
  2004年   1622篇
  2003年   1459篇
  2002年   1246篇
  2001年   1057篇
  2000年   934篇
  1999年   819篇
  1998年   663篇
  1997年   539篇
  1996年   525篇
  1995年   409篇
  1994年   410篇
  1993年   304篇
  1992年   252篇
  1991年   174篇
  1990年   134篇
  1989年   95篇
  1988年   80篇
  1987年   67篇
  1986年   40篇
  1985年   55篇
  1984年   51篇
  1983年   33篇
  1982年   28篇
  1981年   23篇
  1980年   23篇
  1979年   10篇
  1964年   10篇
  1957年   9篇
  1955年   10篇
  1951年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Samples in Si–Al-R-O-N (R = Y, Gd, Yb) systems were prepared by solid-state reactions using R2O3, Al2O3, SiO2 and Si3N4 powders as starting materials. X-ray diffraction was done to investigate RAM-J(R) solid solutions [RAM = R4Al2O9, J(R) = R4Si2N2O7] formation and their equilibrium with RSO (R4Si2O10). Phase relations between RAM, J(R) and RSO at 1700 °C were summarized in a phase diagram. It was determined that a limited solid solution of RAM and RSO could be formed along RAM-RSO tie-line, while RAM and J(R) form a continuous solid solution along RAM-J(R) tie-line. In RAM-J(R)-RSO ternary systems, the RAM-J(R) tie-lines were extended towards the RSO corner to form a continuous solid solution area of JRAMss (R = Y, Gd, Yb). The established phase relations in the Si–Al-R-O-N (R = Y, Gd, Yb) systems may facilitate compositional selections for developing JRAMss as monolithic ceramics or for SiC/Si3N4 based composites using the solid-solutions as a second refractory phase.  相似文献   
2.
《Ceramics International》2021,47(21):29908-29918
The cellulose derived carbon/graphene/ZnO aerogel composite was prepared as an electrode in order to investigate the electrochemical properties. Carbon aerogel was synthesized using paper as an available cellulose source, and the composite was obtained through a new and simple preparation method including the immersion of monolithic carbon aerogel in graphene oxide/Zn2+ suspension and subsequent chemical reduction and freeze drying. The morphology, functional groups and crystalline structure of the samples were studied with Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction Spectroscopy (XRD), respectively. Electrochemical performance of the prepared binder free electrodes was examined using Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS). The data revealed that flexible carbon/graphene/ZnO composite resulted in a low density (0.035 g cm−3) electrode with the capacitance of 900 mF cm−2 at a high current density of 10 mA cm−2, lower IR drop and high cyclic stability (capacitance retention of 96%) after 1000 cycles, at 10 mA cm−2. These features were due to the presence of 3D porous conductive network, highly reduced graphene oxide, and the formation of ZnO nanoparticles on graphene sheets. Moreover, polyaniline (PANI) was introduced to carbon/graphene/ZnO composite electrode using electro-oxidation method at different reaction time and aniline concentration in order to achieve remarkably improved capacitance of 2500 mF cm−2 (at 10 mA cm−2) and low charge transfer resistance. Also, after the supercapacitor device assembly, the capacitance was retained. Based on the results, the synthesized composite is a promising material for new generation of lightweight freestanding electrodes with the high electrochemical performance.  相似文献   
3.
文曼  熊春荣 《精细化工》2021,38(5):981-987
采用溶胶-凝胶法制备CuO-SiO2复合气凝胶,通过在气凝胶孔道内填充TiCl4,然后将其气相水解,得到了在CuO-SiO2气凝胶表面生长了高结晶度的TiO2纳米纤维(CuO-SiO2@TiO2),纤维直径~16 nm.通过XPS、UPS、UV-Vis DRS、荧光光谱(PL)等表征了材料的结构及光电性能.结果表明,制备的CuO-SiO2@TiO2对可见光有明显吸收,且荧光强度较商用TiO2(P25)大幅降低,光生电子-空穴对更加稳定.再在纳米纤维上负载CuO,所得CuO-SiO2@TiO2/CuO在可见光区的荧光强度进一步增强.以300 W氙灯为光源,分别以CuO-SiO2@TiO2及CuO-SiO2@TiO2/CuO为催化剂,无牺牲剂条件下光催化还原CO2,4 h后甲醇产率分别为1304.0及1589.0μmol/g-cat,转换频率(TOF)分别为0.038及0.046 h–1.循环实验表明,纳米纤维具有较好的光催化稳定性,经过4次光催化循环实验后,CuO-SiO2@TiO2/CuO的保留率~94%,甲醇产率可达1472.0μmol/g-cat,TOF为0.042 h–1.  相似文献   
4.
Developing non-platinum group metal (non-PGM) electrocatalysts for the hydrogen oxidation reaction (HOR) represents the efforts towards the more economical use of hydrogen fuel cells and hydrogen energy, which has attracted tremendous attention recently. However, non-PGM electrocatalysts for the HOR are still in their early development stages as compared with the significant advances in those for the oxygen reduction reaction and hydrogen evolution reaction. Herein, this paper summarizes the recent progresses and highlights the key challenges for the rational design of non-PGM electrocatalysts, aiming to promote the development of non-PGM HOR electrocatalysts. Fundamental understandings of the HOR mechanism are firstly reviewed, where theoretical interpretations on the low HOR kinetics in alkaline media, including the hydrogen binding energy theory, the bifunctional mechanism, and the water molecule reorganization, are particularly discussed. Subsequently, progresses of typical non-PGM HOR electrocatalysts in acid and alkaline media are summarized separately. For the HOR under alkaline conditions, the superiorities and challenges of Ni-based catalysts are discussed with a particular focus as they are the most promising non-PGM electrocatalysts. Finally, this paper highlights the challenges and provide perspectives on the future development directions of non-PGM HOR electrocatalysts.  相似文献   
5.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
6.
Portlandite (Ca(OH)2; also known as calcium hydroxide or hydrated lime), an archetypal alkaline solid, interacts with carbon dioxide (CO2) via a classic acid–base “carbonation” reaction to produce a salt (calcium carbonate: CaCO3) that functions as a low-carbon cementation agent, and water. Herein, we revisit the effects of reaction temperature, relative humidity (RH), and CO2 concentration on the carbonation of portlandite in the form of finely divided particulates and compacted monoliths. Special focus is paid to uncover the influences of the moisture state (i.e., the presence of adsorbed and/or liquid water), moisture content and the surface area-to-volume ratio (sa/v, mm−1) of reactants on the extent of carbonation. In general, increasing RH more significantly impacts the rate and thermodynamics of carbonation reactions, leading to high(er) conversion regardless of prior exposure history. This mitigated the effects (if any) of allegedly denser, less porous carbonate surface layers formed at lower RH. In monolithic compacts, microstructural (i.e., mass-transfer) constraints particularly hindered the progress of carbonation due to pore blocking by liquid water in compacts with limited surface area to volume ratios. These mechanistic insights into portlandite's carbonation inform processing routes for the production of cementation agents that seek to utilize CO2 borne in dilute (≤30 mol%) post-combustion flue gas streams.  相似文献   
7.
Ni-based alloys are believed to be the most suitable brazing fillers for SiC ceramic application in a nuclear environment. However, graphite, which severely deteriorates the mechanical property of the joint, is inevitable when Ni reacts with SiC. In this paper, Different amounts of Zr powders are mixed with Inconel 625 powders to braze SiC at 1400 °C. When Zr addition reaches 40 wt%, the brazed seam confirms the absence of graphite. This research proves that Zr can avoid the graphite’s formation by suppressing Ni’s activity. The room-temperature shear strength of the joint with graphite’s absence is tested to be 81.97 MPa, which is almost three times higher than that of the joint with graphite. The interfacial reaction process and mechanism of the SiC joint are investigated and explained in this paper using thermodynamic calculations.  相似文献   
8.
Non-precious metal-based catalysts for oxygen evolution reaction (OER) have been extensively studied, among which the transition metal X-ides (including phosph-ides, sulf-ides, nitr-ides, and carb-ides) materials are emerging as promising candidates to replace the benchmark Ir/Ru-based materials in alkaline media. However, it is controversial whether the metal Xides host the real active sites since these metal Xides are thermodynamically unstable under a harsh OER environment—it has been reported that the initial metal Xides can be electrochemically oxidized and transformed into corresponding oxides and (oxy)hydroxides. Therefore, the metal Xides are argued as “pre-catalysts”; the electrochemically formed oxides and (oxy)hydroxides are believed as the real active moieties for OER. Herein, the recent advances in understanding the transformation behavior of metal Xides during OER are re-looked; importantly, hypotheses are provided to understand why the electrochemically formed oxides and (oxy)hydroxides catalysts derived from metal Xides are superior for OER to the as-prepared metal oxides and (oxy)hydroxides catalysts.  相似文献   
9.
A consecutive competitive gas-liquid reaction is investigated using a Taylor bubble setup regarding the influence of fluid mixing in the bubble wake on yield and selectivity. The concentration fields behind a Taylor bubble are visualized and measured quantitatively with a novel time-resolved absorption imaging technique based on Beer Lamberts law and an integral selectivity is derived. In addition, the calculation of the local selectivity, often used in numerical approaches, is discussed and the existing experimental limits for its derivation are pointed out. Finally, an increase in selectivity of a competitive consecutive reaction for enhanced mixing is experimentally confirmed.  相似文献   
10.
Borazine rings act as a pivotal part in siliconboroncarbonitride ceramics (SiBCN) for high-temperature stability and great resistance to crystallization. A detailed investigation of the ring formation mechanism will guide the design and synthesis of SiBCN to meet application requirements under extreme conditions. Boron trichloride (BCl3) and hexamethyldisilazane (HN(SiMe3)2) are common raw materials for the synthesis of precursors for SiBCN. In this paper, quantum chemical calculation was used to study the cyclization reaction mechanism between BCl3 and HN(SiMe3)2 to form trichloroborazine (TCBZ) at the MP2/6-31G (d,p) level of theory. We discussed the structure properties, reaction pathways, energy barriers, reaction rates, and other aspects in detail. The results show that BCl3 and HN(SiMe3)2 alternately participate in the reaction process, accompanied by the release of trimethylchlorosilane (TMCS), and that the entire reaction shows an absolute advantage in terms of energy. In the Step by step reaction, lower reaction barriers are formed due to the introduction of BCl3 with more heat released compared to that for the introduction of HN(SiMe3)2. The final single-molecule cyclization and TMCS elimination steps are found to be faster compared to all previous bimolecular reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号