首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28592篇
  免费   3404篇
  国内免费   1437篇
电工技术   2326篇
综合类   2576篇
化学工业   3817篇
金属工艺   613篇
机械仪表   1499篇
建筑科学   3357篇
矿业工程   493篇
能源动力   1188篇
轻工业   5040篇
水利工程   872篇
石油天然气   935篇
武器工业   342篇
无线电   1815篇
一般工业技术   4448篇
冶金工业   1249篇
原子能技术   631篇
自动化技术   2232篇
  2024年   77篇
  2023年   603篇
  2022年   1091篇
  2021年   1394篇
  2020年   1353篇
  2019年   1115篇
  2018年   984篇
  2017年   1224篇
  2016年   1194篇
  2015年   1310篇
  2014年   1696篇
  2013年   2180篇
  2012年   2444篇
  2011年   2442篇
  2010年   1578篇
  2009年   1526篇
  2008年   1369篇
  2007年   1588篇
  2006年   1388篇
  2005年   1183篇
  2004年   896篇
  2003年   753篇
  2002年   594篇
  2001年   508篇
  2000年   418篇
  1999年   358篇
  1998年   301篇
  1997年   247篇
  1996年   197篇
  1995年   218篇
  1994年   165篇
  1993年   156篇
  1992年   129篇
  1991年   90篇
  1990年   91篇
  1989年   72篇
  1988年   61篇
  1987年   47篇
  1986年   33篇
  1985年   37篇
  1984年   37篇
  1983年   15篇
  1982年   23篇
  1980年   32篇
  1979年   22篇
  1965年   15篇
  1964年   19篇
  1963年   15篇
  1961年   13篇
  1957年   14篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
1.
Novel inks were formulated by dissolving polycaprolactone (PCL), a hydrophobic polymer, in organic solvent systems; polyethylene oxide (PEO) was incorporated to extend the range of hydrophilicity of the system. Hydroxyapatite (HAp) with a weight ratio of 55–85% was added to the polymer-based solution to mimic the material composition of natural bone tissue. The direct ink writing (DIW) technique was applied to extrude the formulated inks to fabricate the predesigned tissue scaffold structures; the influence of HAp concentration was investigated. The results indicate that in comparison to other inks containing HAp (55%, 75%, and 85%w/w), the ink containing 65% w/w HAp had faster ink recovery behavior; the fabricated scaffold had a rougher surface as well as better mechanical properties and wettability. It is noted that the 65% w/w HAp concentration is similar to the inorganic composition of natural bone tissue. The elastic modulus values of PCL/PEO/HAp scaffolds were in the range of 4–12 MPa; the values were dependent on the HAp concentration. Furthermore, vancomycin as a model drug was successfully encapsulated in the PCL/PEO/HAp composite scaffold for drug release applications. This paper presents novel drug-loaded PCL/PEO/HAp inks for 3D scaffold fabrication using the DIW printing technique for potential bone scaffold applications.  相似文献   
2.
A large-scale high-precision scan stage is important equipment in the industrial productions of micro-fabrication such as flat panel display (FPD) lithography systems. Designing controllers for multi-input multi-output (MIMO) systems is time-consuming and needs experience because of the interaction between each axis and many controller tuning parameters. The aim of this study is to develop a peak filter design method based on frequency response data to reduce repetitive disturbance. This data-based approach does not use the model and only uses the frequency response data of the controlled system and the disturbance spectrum calculated from the scanning error data (Contribution 1). The peak filter is designed by convex optimization and satisfies robust stability conditions for six-degree-of-freedom systems (Contribution 2). The control performance of the designed peak filter is experimentally demonstrated with an industrial MIMO large-scale high-precision scan stage in reducing the scanning error of the main stroke of the translation along the x-axis (Contribution 3).  相似文献   
3.
High-quality p-type semiconducting Co3O4 with mixed morphology of nanoparticles/nanorods are synthesized using a hydrothermal route for high response and selective hydrogen sulphide (H2S) sensor application. XRD and Raman studies revealed the crystal structure and molecular bonding for obtained Co3O4, respectively. The nanoparticles/nanorods-like structures were confirmed for Co3O4 using FESEM and TEM analysis. The EDS and XPS spectra analysis were carried out for elemental composition and chemical atomic states of Co3O4. The Co3O4 sensor is investigated for gas sensing properties in dynamic conditions. The sensor exhibited the highest selectivity towards H2S among various hydrogen-contained gases at 225 °C. The sensor revealed a high response of 357% and 44% for 100 and 10 ppm H2S gas concentrations, respectively. The Co3O4 sensor exhibited a systematic dynamic resistance response for 100–10 ppm range H2S gas. The excellent dynamic resistance repeatability of the sensor was shown towards 25 ppm H2S gas. The response of Co3O4 sensor was investigated at different operating temperatures and H2S concentrations. The sensor stability and H2S sensing mechanism for the Co3O4 sensor have been reported. Highly uniform and mixed nanostructures of Co3O4 can be the potential sensor material for real-time high-performance H2S sensor application.  相似文献   
4.
The gas purging states affect electricity output and energy storage capacity of unitized regenerative fuel cells. In this study, a model of unitized regenerative fuel cell is established. Cell voltages and operating temperatures influences on the dynamic distribution of thermal fluid during purging process and the discharge of residual liquid water in electrolytic cell mode are investigated. The motivation of the present study is better understanding the gas purging characteristics and its effect on reaction behaviors of unitized regenerative fuel cells. Simulation results reveal a significant influence of purging gas temperature on the water flooding and a great effect of operating voltage on the water diffusion. The operating temperature of electrolytic cell model almost has little effect on purging results at different cell temperature and the same purging gas temperature. When the purging gas temperature is changed, higher temperatures of cell and purging gas facilitate liquid water discharging out from the cell regions. In cell water flooding situation, when having large liquid content, the purging gas has little effects on the water expelling process.  相似文献   
5.
In this study, the seismic behavior of a mechanically stabilized earth (MSE) wall with inclined backfill is investigated under sinusoidal acceleration excitations using a series of 1-g shaking table tests performed on the MSE model of 150 cm in height reinforced with polymeric geostrips. The effects of the stiffness of the reinforcement and slope angles of the backfill soil on the acceleration amplification factor (RMSA), the lateral displacement of the wall, the surface displacement of the backfill, the distribution of dynamic earth pressure along the height of reinforced wall and the strain distributions on the surfaces of the polymeric geostrips in three planes of the wall are investigated. The experimental results show that the dynamic earth pressure determined by traditional pseudo-static approaches leads to overestimated values. In addition, increasing the inclination angle of backfill soil results in the increase of surface settlement, lateral wall displacements, soil dynamic earth pressures, acceleration amplification factors and strains on the polymeric geostrip materials. The stiffness of the polymeric geostrip material has a negligible effect on the displacement, dynamic earth pressures and failure surface geometry.  相似文献   
6.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
7.
At present, the synthesis of body temperature triggering shape memory polymers usually requires elaborate structural design, which limits their wide application. Herein, starting from bio-based Eucommia ulmoides gum (EUG), a series of EUG/silica hybrids (ESHs) are prepared through a facile one-pot process, in which EUG is epoxied and then self-crosslinked with SiO2 by epoxy ring-open reaction. Varying the amount of H2O2, the shape memory transition temperature (Ttrans) of ESHs is adjusted to 47.4–36.6 ℃, which is close to human body temperature (37 ℃). Among them, ESH-17 exhibited the best body temperature triggering shape memory ability (Ttrans = 36.6 ℃), which can restore the permanent shape within 60 s at 37 ℃ with a shape fixity ratio of 99% and shape recovery ratio near 100%. In addition, the shape memory mechanism is discussed and shows some application scenarios of ESHs. The as-produced materials can be used as smart biomaterials such as self-tightening sutures, self-sealing root canal filling materials, and so on.  相似文献   
8.
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.  相似文献   
9.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
10.
Exocytosis plays an essential role in the communication between cells in the nervous system. Understanding the regulation of neurotransmitter release during exocytosis and the amount of neurotransmitter content that is stored in vesicles is of importance, as it provides fundamental insights to understand how the brain works and how neurons elicit a certain behavior. In this minireview, we summarize recent progress in amperometric measurements for monitoring exocytosis in single cells and electrochemical cytometry measurements of vesicular neurotransmitter content in individual vesicles. Important steps have increased our understanding of the different mechanisms of exocytosis. Increasing evidence is firmly establishing that partial release is the primary mechanism of release in multiple cell types.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号