首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8924篇
  免费   547篇
  国内免费   114篇
电工技术   42篇
综合类   325篇
化学工业   6180篇
金属工艺   154篇
机械仪表   81篇
建筑科学   464篇
矿业工程   63篇
能源动力   22篇
轻工业   712篇
水利工程   42篇
石油天然气   122篇
武器工业   50篇
无线电   69篇
一般工业技术   1213篇
冶金工业   28篇
原子能技术   6篇
自动化技术   12篇
  2024年   55篇
  2023年   84篇
  2022年   132篇
  2021年   293篇
  2020年   241篇
  2019年   249篇
  2018年   214篇
  2017年   249篇
  2016年   225篇
  2015年   239篇
  2014年   405篇
  2013年   466篇
  2012年   661篇
  2011年   661篇
  2010年   482篇
  2009年   463篇
  2008年   417篇
  2007年   583篇
  2006年   568篇
  2005年   525篇
  2004年   432篇
  2003年   403篇
  2002年   325篇
  2001年   285篇
  2000年   157篇
  1999年   148篇
  1998年   123篇
  1997年   66篇
  1996年   77篇
  1995年   58篇
  1994年   56篇
  1993年   55篇
  1992年   48篇
  1991年   42篇
  1990年   22篇
  1989年   20篇
  1988年   6篇
  1987年   9篇
  1986年   3篇
  1985年   14篇
  1984年   13篇
  1983年   8篇
  1982年   2篇
  1951年   1篇
排序方式: 共有9585条查询结果,搜索用时 15 毫秒
1.
In order to prepare waterborne polyurethane with excellent water resistance and thermodynamic properties, a series of side chain fluorinated waterborne polyurethane-urea (FWPU-UA) was synthesized with polytetramethylene ether glycol, N-(2-methyl-1,3-propanediol-2′-)-perfluoro-1-butanesulfonyl amine (NPBA), isophorone diisocyanate, and isophoronediamine. With the increase of NPBA content, the weight loss temperature, glass transition temperature, and tensile strength of FWPU-UA were all improved. Gaussian fitting analysis of infrared data and density functional theory simulation proved that the introduction of fluorine side chains increased the interaction of hydrogen bonding in the FWPU-UA. X-ray photoelectron spectroscopy analysis indicated that the aggregation of fluorine atoms on the surface of film were caused by the migration and enrichment of fluorine side chains. Furthermore, the water resistance of polyurethane-urea film could be significantly improved by adding a small amount of NPBA, and the seven-day water absorption rate of polyurethane-urea film was reduced from 30.13% to 12.55%.  相似文献   
2.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
3.
Abstract

In this decade, aesthetic potentials of electrospun polymeric nanofibers for advanced apparels have been studied. For the first time, we studied the sustainable aspects in the batchwise dyeing process of electrospun polymeric nanofibers in terms of conserving thermal energy and reducing the wastewater pollution. The nanofibrous mats were prepared using polyurethane (PU) polymer followed by dyeing with disperse dyes by conventional (CN) dyeing method as well as ultrasonic (US)-assisted dyeing method. Potential of savings in thermal energy (1000?kcal), dwell time (40?min) and quantity of disperse dyes (1.5% on the mass of nanofibers) were realized during the US-assisted dyeing method in comparison with the CN dyeing method. Further, total dissolved solids (TDS) and chemical oxygen demand (COD) contents of dyeing effluents demonstrated considerable ecological merits of the US dyeing method in terms of 30% reduction in TDS and 46% reduction in COD contents in comparison with the CN dyeing method. Excellent color strength (K/S) (reached 10) of dyed PU nanofibrous mats were achieved by US-assisted dyeing method in comparison with the K/S (reached 6) with CN dyeing method. Attenuated total reflectance-Fourier transform infra-red (FTIR) spectroscopy, UV–Vis spectrophotometer and Scanning electron microscopy (SEM) analysis were also applied during the study for characterization.  相似文献   
4.
The incorporation of viscoelastic materials represents an effective strategy to reduce the vibratory level of structural components. Thermoplastic vulcanizates (TPVs) are a special type of viscoelastic material that combines the elastomeric properties of rubbers with the easy processing of thermoplastics. In the present work, we propose innovative ways to improve the damping properties of high‐performance TPVs by using rubbers with carboxylic functionalities. For that, TPVs from physical blends of carboxylated hydrogenated acrylonitrile butadiene rubber (XHNBR) and polyamide 6 (PA6) were prepared. The chain dynamics of different mixed crosslink systems containing peroxide, metal oxides and hindered phenolic antioxidants were investigated in order to find the most suitable strategy to design a high‐performance TPV system with upgraded damping properties. The results indicate that the damping performance of the TPV system can be tailored by controlling the type and magnitude of the bonding interactions between the mixed crosslink system and the XHNBR rubber phase. Therefore, this study demonstrates the potential of TPV systems containing carboxylic rubbers as high‐performance damping materials. © 2020 Society of Chemical Industry  相似文献   
5.
针对传统相变微胶囊后整理法制备蓄热调温纺织品时存在制备工序繁杂、效率低等难点,开发了一种简便快捷的后整理法。选用相变蜡、聚氧乙烯辛基苯酚醚-10(OP-10)乳化剂和水性聚氨酯为主要组分,经高剪切乳化制备蓄热调温功能整理剂,利用浸轧—焙烘方式对棉织物进行整理。优化乳化剂用量、相变蜡与聚氨酯配比及焙烘温度,并测定整理后棉织物及背心的蓄热调温性能。结果表明:当OP-10质量分数为5%,相变蜡与聚氨酯的质量比为1.5∶1,焙烘温度150 ℃时,整理剂在纤维表面原位成膜形成包裹纤维的蓄热调温薄膜,从而赋予棉织物蓄热调温功能;整理后棉织物具备蓄热调温功能,由其所制作的背心具有显著的蓄热调温功能。  相似文献   
6.
为了解决超细纤维合成革在制备、染色以及功能整理等方面出现的问题,系统阐述了超细纤维合成革的发展历程以及未来超细纤维合成革的发展方向;分析了染色工艺、染色助剂、染色基布的改性对聚酰胺超细纤维合成革染色性能的影响,评述了聚酯超细纤维合成革的染色现状;总结了国内超细纤维合成革经功能整理后的附加性能,包括阻燃、防污、抗静电、抗菌、耐寒、调温等。最后指出了未来超细纤维合成革在制备方式、高性能染色以及功能化整理方面应大力发展的方向,以对企业的产品优化升级、提高产品的市场竞争力提供指导。  相似文献   
7.
炮孔填塞是爆破施工过程中的一个关键环节,也是践行精细爆破设计理论的重要措施。传统的炮泥填塞存在着诸多不足,为此,研制了以聚氨酯为基材的TK炮孔填塞剂,通过大量基础性能研究和隧道现场工业性试验,论证了其作为炮孔填塞材料可降低炸药单耗,提高单循环进尺和炮孔利用率,减小空气冲击波、爆破噪声等有害效应的影响,且是安全可靠的。TK炮孔填塞剂优良的填塞效果、方便快捷的施工方法及显著的经济效益,方便于在爆破工程中推广应用。  相似文献   
8.
The breath figure (BF) method is an effective process for fabricating porous polymeric films. In this study, we fabricated porous polymer films from thermoplastic polyurethane (PU) through static BF with CHCl3 as a solvent under 55–80% relative humidity. The porous PU films were prepared within various pore structures and sizes, which were adjustable, depending on the fabrication conditions. The humidity and exposure time were examined as variable parameters affecting the surface morphology, wettability, and cytotoxicity. Atorvastatin calcium, a hyperlipidemic agent, was loaded into the porous films during the casting process, and the drug-loading and drug-releasing behaviors of the porous PU membranes were evaluated. Approximately 60–80% of the drug was released in 14 days. The films exhibited sustained drug-release performances because of the hydrophobicity and nonbiodegradable nature of PU for perivascular drug administration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47658.  相似文献   
9.
Hydrolytic stability is an essential requirement for polyurethanes (PUs) that are used in highly humid and aqueous environments. In this study, hydrolysis-resistant PU elastomers (PUEs) are synthesized based on hydrophobic bio-based polyfarnesene diol (PFD), which contains unique “bottle brushes” structure (with long branched hydrocarbon side chains). The effect of hard segment (HS) content, ranging from 30 to 50%, on the morphology and properties of PUEs is investigated by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, tensile, water absorption, and contact angle measurements. The results show that there are prominent phase separations in the synthesized PUEs. The PUEs show a three-stage degradation process and two Tg, one is at about −66 °C and the other 61 °C, which are related to the soft segment and HS, respectively. Water contact angles of PUEs increase from 98.6 to 105.2° with the increasing of PFD structural unit fraction. After being immersed in deionized water for 30 days, PUEs show no significant degradation of both tensile strength and elongation at break, and mass changes of all samples are less than 0.5%. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47673.  相似文献   
10.
The efficient surface modification of titanium dioxide (TiO2) particles with different sizes was first carried out with “water only method” (Appl. Surf. Sci. 2018, 447, 664–672) developed in our group using 12-hydroxy stearic acid (12-HSA) as the modifier. The 12-HSA-modified TiO2 particles with different sizes were then used to explore their effect on the mechanical and thermal properties of a thermoplastic polyurethane urea (TPUU) elastomer with superior mechanical and thermal properties produced newly in our lab using nonsymmetric alicyclic diisocyanate and diamine. Orthogonal experimental results showed that the order of impact of each factor on the modification efficiency of TiO2 particles was: Temperature > time > modifier content. It was found that, in the nanometer (≤100 nm) range, smaller particles were more helpful to enhance the tensile strength of the TPUU elastomer, while larger ones to increase more significantly the elongation at break. Besides, the TiO2/polyurethane urea nanocomposites exhibited much better thermomechanical performance than the pristine TPUU elastomer, and the thermomechanical performance of the nanocomposites increased with decreasing particle size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号