首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6952篇
  免费   717篇
  国内免费   444篇
电工技术   175篇
综合类   818篇
化学工业   1240篇
金属工艺   410篇
机械仪表   300篇
建筑科学   1472篇
矿业工程   193篇
能源动力   209篇
轻工业   331篇
水利工程   442篇
石油天然气   622篇
武器工业   67篇
无线电   281篇
一般工业技术   1114篇
冶金工业   148篇
原子能技术   32篇
自动化技术   259篇
  2024年   9篇
  2023年   88篇
  2022年   170篇
  2021年   201篇
  2020年   199篇
  2019年   193篇
  2018年   195篇
  2017年   250篇
  2016年   238篇
  2015年   226篇
  2014年   366篇
  2013年   396篇
  2012年   455篇
  2011年   542篇
  2010年   374篇
  2009年   429篇
  2008年   431篇
  2007年   493篇
  2006年   451篇
  2005年   376篇
  2004年   310篇
  2003年   316篇
  2002年   246篇
  2001年   203篇
  2000年   138篇
  1999年   128篇
  1998年   116篇
  1997年   94篇
  1996年   92篇
  1995年   93篇
  1994年   51篇
  1993年   38篇
  1992年   39篇
  1991年   38篇
  1990年   30篇
  1989年   20篇
  1988年   22篇
  1987年   13篇
  1986年   6篇
  1985年   11篇
  1984年   2篇
  1983年   6篇
  1982年   6篇
  1981年   1篇
  1980年   6篇
  1979年   4篇
  1976年   1篇
  1951年   1篇
排序方式: 共有8113条查询结果,搜索用时 171 毫秒
1.
The present research work concentrates on viscous dissipation, Dufour, and heat source on an unsteady magnetohydrodynamics natural convective flow of a viscous, incompressible, and electrically conducting fluid past an exponentially accelerated infinite vertical plate in the existence of a strong magnetic field. The presence of the Hall current induces a secondary flow in the problem. The distinguishing features of viscous dissipation and heat flux produced due to gradient of concentration included in the model along with heat source as they are known to arise in thermal-magnetic polymeric processing. The flow equations are discretized implicitly using the finite difference method and solved using MATLAB fsolve routine. Numerical values of the primary and secondary velocities, temperature, concentration, skin friction, Nusselt number, and Sherwood number are illustrated and presented via graphs and tables for various pertinent parametric values. The Dufour effect was observed to strengthen the velocity and temperature profile in the flow domain. In contrast, due to the impact of viscous dissipation, the local Nusselt number reduces. The study also reveals that the inclusion of the chemical reaction term augments the mass transfer rate and diminishes the heat transfer rate at the plate.  相似文献   
2.
《Soils and Foundations》2022,62(1):101089
In recent years, the mechanical properties of frozen soils under complex stress states have attracted significant attention; however, limited by the test apparatus, true triaxial tests on frozen soils have rarely been conducted. To study the strength and deformation properties of frozen sand under a true triaxial stress state, a novel frozen soil testing system, i.e., a true triaxial apparatus, was developed. The apparatus is mainly composed of a temperature control system, a servo host system, a hydraulic servo loading system, and a digital control system. Several true triaxial tests were conducted at a constant minor principal stress (σ3) and constant intermediate principal stress ratio (b) to study the effect of intermediate principal stress (σ2) on the mechanical properties of frozen sand. The test results showed that the stress–strain curve can be mainly divided into three stages, with evidence of strain hardening characteristics. The strength, elastic modulus, and friction angle increased with the increase in b from 0 to 0.6, but decreased when increasing b from 0.6 to 1, whereas the cohesion varied little with the variation in b. The deformation in the direction of σ2 changed from dilative to compressive and that in the direction of σ3 remained dilative throughout.  相似文献   
3.
One major research topic is to characterize the mechanical behaviour of actual reinforced pavement structures from laboratory experimentation and take it into account for the design. This investigation aims to verify the effect of fiberglass geogrid presence on interface linear viscoelastic (LVE) behaviour separately and as a system along with the bituminous mixture layers. To conduct the research, two different fiberglass geogrids, with ultimate tensile strength (UTS) of 100 and 50 kN/m, and tack coat made of straight-run bitumen and modified by polymer were combined for the fabrication of three reinforced configurations. In addition, two unreinforced configurations were also fabricated. The first was a single layer slab and the second was a double-layered slab composed of two bituminous mixtures (same type) bonded layers by a tack coat. Complex modulus tests were carried out in specimens cored in two different directions, vertically (V) and horizontally (H) cored. The experimental data were fitted using the 2 Springs, 2 Parabolic Elements and 1 Dashpot (2S2P1D) model. The test results showed that all interfaces’ complex modulus obtained for V specimens were LVE. Moreover, complex viscous properties of the interfaces were obtained from the used binder. The interface containing polymer modification presented the highest stiffness.  相似文献   
4.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
5.
《Ceramics International》2022,48(7):9765-9780
The polycrystalline ceramic specimens of three different alumino-silicate solid solutions (Al0.70Si0.30O, Al0.73Si0.27O and Al0.75Si0.25O) consisting of different alumina and silica concentrations have been synthesized by thermal plasma sintering technique. From structural analysis carried out by X-ray diffraction, the ceramics are mostly found to consist of two different phases of mullite and sillimanite. SEM images of these ceramics reveal a high dense and less porous microstructure with homogeneous distribution of grains throughout their surface. These materials exhibit high dielectric constant value (>103) with low dissipation factor. The AC conductivity analysis reveals that Al0.70Si0.30O and Al0.75Si0.25O ceramics possess room temperature conductivity values of the order of 10?5, whereas Al0.73Si0.27O has conductivity of 10?7 order that increases with rise in temperature. From the Nyquist plots, the grain and grain boundary conductivities are distinguished and negative temperature coefficient of resistance behavior is identified in these ceramics with small positive temperature coefficient of resistance effect.  相似文献   
6.
This paper reports the thermal, morphological and mechanical properties of environmentally friendly poly(3-hydroxybutyrate) (PHB)/poly(butylene succinate) (PBS) and PHB/poly[(butylene succinate)-co-(butylene adipate)] (PBSA) blends, prepared by melt mixing. The blends are known to be immiscible, as also confirmed by the thermodynamic analysis here presented. A detailed quantification of the crystalline and amorphous fractions was performed, in order to interpret the mechanical properties of the blends. As expected, the ductility increased with increasing PBS or PBSA amount, but in parallel the decrease in the elastic modulus appeared limited. Surprisingly, the elastic modulus was found properly described by the rule of mixtures in the whole composition range, thus attesting mechanical compatibility between the two blend components. This unusual behavior has been explained as due to co-continuous morphology, present in a wide composition range, but also at the same time as the result of shrinkage occurring during sequential crystallization of the two components, which can lead to physical adhesion between matrix and dispersed phase. For the first time, the elastic moduli of the crystalline and mobile amorphous fractions of PBS and PBSA and of the mobile amorphous fraction of PHB at ambient temperature have been estimated through a mechanical modelling approach. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   
7.
This research work was conducted to investigate the impact of critical processing conditions on the selected mechanical properties of maize in the production of fermented ogi slurry. Five varieties of maize (A4W, C3Y, D8W, B2Y, and E9W) were soaked at 28 ºC and average hot soaking at 65ºC, respectively, for 96 h at 12-h interval. Selected mechanical properties were evaluated based on a 5 × 2 × 9 factorial design (varieties× soaking methods× soaking periods). Force (FB) and energy required to break (EB) maize grains decreased significantly (p < 0.05) up to the 12th hour. The EB reduced from 873.3 to 70.0 N mm and from 873.3 to 77.8 N mm for variety E9W at soaking conditions of 28ºC and 65ºC, respectively. Similar trends were observed for other maize varieties. Modulus of elasticity and resilience decreased significantly (p < 0.05) with increase in soaking period and moisture content. The EB to break maize grains was directly proportional to the product of Young’s modulus and area (Em A1.5), the FB and area (Fm.5) and force required to break and geometric mean diameter (F Dg2) of maize grains with a high R2 (0.9610.999). This study suggested that the duration of soaking between 12 and 24 h should be enough to significantly (p > 0.05) reduce the hardness, force, and energy required to break whole maize grains in the production of this fermented product and relevant for predicting minimum required energy for a large-scale operation.  相似文献   
8.
An investigation is carried out on the effect of dissipative heat energy on the flow of an electrically conducting viscous fluid past a shrinking sheet. Both viscous and Joule dissipation effects are considered along with heat generation/absorption for the enhancement of heat transfer properties. The governing nonlinear coupled partial differential equations are transformed into nonlinear ordinary differential equations by a suitable choice of similarity transformations. However, the complex transformed equations are solved by an approximate analytical method known as the Adomian decomposition method with a suitable initial guess solution assumed from the known initial conditions. Moreover, the behavior of several parameters characterizing the flow phenomena are studied via graphs and the numerical computations for the engineering coefficients are obtained and presented through tables. However, the major outcomes of the results are that a higher suction is required to resist the fluid temperature and sinks as well as the dissipative heat energy favors enhancing the fluid temperature at all points in the flow domain.  相似文献   
9.
The purposes of this work were to obtain the accurate elastic modulus of the nanocrystalline WC–Co cemented carbides, and to propose the mechanism for the difference of elastic modulus between the nanocrystalline and conventional polycrystalline cemented carbides. The nanocrystalline cemented carbide was prepared by spark plasma sintering (SPS) technique. The conventional polycrystalline cemented carbides were prepared by SPS and sinter-HIP techniques as references, respectively. The sintered cemented carbides were characterized by X-ray diffractometry, scanning electron microscopy and the transmission electron microscopy with precession electron diffraction technology. The elastic modulus was obtained by averaging the values measured with the continuous stiffness measurement method of the nanoindentation technology. The results show that the nanocrystalline cemented carbide has a relatively low modulus, which could be attributed to the more interface area and higher fraction ratio of the hcp cobalt phase caused by the rapid heating and cooling process during SPS.  相似文献   
10.
ABSTRACT

The polymer-bonded explosive (PBX) is a kind of multi-phase composite consisting of the polymeric binder and embedded energetic particles, in which the particle volume fraction (PVF) is often higher than 90%. In the present work, by using the Voronoi-polygon generation method along with the concept of gradation to generate Voronoi particles with given gradation, and with further operations including modification, shrinking, smoothing, etc. to the particles, a new meso-structure construction method for PBXs is proposed. The constructed meso-structures possess good gradation relationship and have high PVFs (94.99% in maximum) simultaneously. The strict periodicity on the boundaries of the meso-structure can also be achieved. To verify the constructed PBX meso-structures, the numerical manifold method (NMM) is used to simulate the effective modulus of the constructed meso-structures by considering different influencing factors such as the size of meso-structure, PVF, gradation, and initial defects, etc. The simulation results are analyzed qualitatively, and the causes of differences between the simulation results and available experimental results or other numerical results are discussed. The validity of the proposed method for the construction of PBX meso-structures is verified. This work also provides foundations for the further numerical studies of the mechanical and thermal behaviors of PBXs at the mesoscale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号