首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
金属工艺   4篇
  2022年   1篇
  2021年   3篇
排序方式: 共有4条查询结果,搜索用时 9 毫秒
1
1.
目的 通过氩弧熔覆技术在TC4合金表面制备石墨烯增强钛基复合涂层,以改善其耐磨性能.方法 将钛粉和石墨烯在球磨机中充分混合.将混合后的粉末涂覆于TC4合金表面,采用氩弧熔覆技术将预涂覆粉末熔化,制备出陶瓷颗粒增强钛基熔覆层.采用X射线衍射分析仪分析涂层的物相,利用光学显微镜、扫描电子显微镜分析熔覆层中颗粒相的组成及分布.采用显微维氏硬度仪和摩擦磨损试验机,测试熔覆层的显微硬度和磨损性能.结果 熔覆层厚度可达1 mm,且表面及横截面没有气孔、裂纹等缺陷产生,物相主要包括TiC和 α-Ti.熔覆层中不同区域的组织存在差别,涂层的中上部组织主要为树枝晶,底部组织中树枝晶逐渐减少.熔覆层与基体呈冶金结合,组织致密.增强相TiC以颗粒状和花瓣状形式存在.石墨烯增强钛基复合涂层的显微硬度高达845.4HV.在相同磨损条件下,TC4合金基体与熔覆层的磨损量分别是0.153 g和0.0123 g,熔覆层的磨损量明显降低.涂层的磨损机制主要是磨粒磨损.结论 与TC4合金基体对比,熔覆层的显微硬度提高约2.5倍,耐磨性提高12倍.氩弧熔覆原位自生TiC陶瓷颗粒增强钛基熔覆层可显著提高TC4合金表面的耐磨性.  相似文献   
2.
高熵合金涂层在工程实际应用中较传统合金具有良好的前景,对近年来高熵合金涂层的研究进展进行了概述。首先对制备高熵合金涂层的表面熔覆技术进行详细的介绍,其中包括激光熔覆技术、等离子熔覆技术、氩弧熔覆技术,分析了各表面熔覆技术的优缺点;然后总结了高熵合金涂层的组织及性能特征,涂层中相的组成包括:固溶体相、金属间化合物、纳米析出相、非晶相;性能上,高熵合金涂层由于各种效应的作用,具有高强度及硬度、优异的耐磨性、良好的耐腐蚀性及高温抗氧化性等一系列优异的性能;而后进一步分析了表面熔覆技术工艺参数对高熵合金涂层质量的影响规律、合金元素对高熵合金涂层性能的影响及热处理对高熵合金涂层相组织演变的影响;最后对高熵合金涂层的应用前景及其未来的研究方向进行展望。  相似文献   
3.
采用热重-差热分析(TG-DTA)方法对不同NH4HF2/Al2O3质量比的Al2O3+NH4HF2混合物的热行为进行了分析,确定了DTA曲线的临界温度。进一步分析了各临界温度前后直接热处理所得产物的形貌和物相。结果表明,质量比对临界反应温度和反应过程没有影响。氟化反应在室温下以(NH4)3AlF6的形成开始,在162.3~162.8 ℃时占主导地位,在180 ℃左右完成。进一步热处理后,(NH4)3AlF6在249.8~250.1 ℃分解为NH4AlF4,在356.8~357.7 ℃分解为β-AlF3;随后β-AlF3在400~650 ℃向α-AlF3转变。  相似文献   
4.
通过氩弧熔覆技术在纯铜表面制备TiB2增强 Ni 基复合涂层,以改善其耐磨性能. 将钛粉、硼粉和镍粉在球磨机中充分混合,采用氩弧熔覆技术将纯铜表面预置粉末熔化制备出陶瓷颗粒增强镍基熔覆层. 采用X射线衍射仪、扫描电子显微镜、透射电子显微镜分析涂层的物相及涂层中陶瓷颗粒相的组成、分布及结构,利用显微硬度仪和摩擦磨损试验机测试涂层的显微硬度和耐磨性能. 结果表明,熔覆层物相主要包括γ(Ni, Cu)和TiB2;陶瓷颗粒增强相弥散分布于熔覆层中,其中颗粒相TiB2以六边形存在,熔覆层内部与基体界面处均无缺陷产生;熔覆涂层具有较高的显微硬度,当(Ti+B)质量分数为10%时,涂层显微硬度高达781.3 HV,与纯铜基体对比,熔覆层显微硬度提高约11.7倍;在相同磨损条件下,随(Ti+B)质量分数的增加,熔覆涂层的摩擦系数及磨损失重先减小后增大;氩弧熔覆原位自生TiB2陶瓷颗粒增强镍基熔覆层可显著提高纯铜表面的耐磨性能.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号