首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
金属工艺   4篇
一般工业技术   1篇
冶金工业   2篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2015年   2篇
  2014年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
采用超音速微粒沉积技术在5083铝合金表面制备γ-TiAl基Ti-45Al-7Nb-2V-2Cr合金耐蚀防护涂层,实现γ-TiAl基涂层的原态制备,并对涂层微观结构及电化学性能进行研究。结果表明:在涂层中的Al、V元素富集区,喷涂颗粒发生显著的塑性变形,有利于TiAl合金颗粒的沉积成形;通过在5083铝合金表面制备TiAl合金防护涂层可使其与TA2钛合金的接触腐蚀电流由16.2μA降为0.191μA,接触腐蚀敏感性由E级降到A级,喷涂件可与TA2钛合金直接接触使用,解决了铝合金与钛合金的接触腐蚀防护问题。  相似文献   
2.
铜合金表面超音速微粒沉积镍基涂层的耐蚀性能研究   总被引:4,自引:4,他引:0  
目的研究铜合金表面镍基合金涂层的耐腐蚀性能,解决铜合金表面腐蚀损伤问题。方法采用超音速微粒沉积技术在黄铜表面制备镍基合金涂层,通过电化学方法和中性盐雾实验对黄铜基体及镍基合金涂层的耐腐蚀性能进行测试。结果涂层的腐蚀电流密度较基体降低了34倍。涂层表面生成的连续且致密的氧化膜阻止了腐蚀的进一步发生,在盐雾腐蚀时间进行到500 h时,腐蚀速度接近于零,涂层腐蚀缓慢。结论超音速微粒沉积技术可以制备耐腐蚀性能优异的镍基合金涂层,并且可以显著提高黄铜的基体耐蚀性。  相似文献   
3.
为提高镁合金的耐蚀性能,采用超音速微粒沉积技术在ZM5基体上制备Al-Si防护涂层。采用环氧面漆对涂层进行封孔处理,采用电化学方法和中性盐雾实验对镁合金基体、涂层及涂层封孔后的抗腐蚀性能进行测试。结果表明:防护涂层致密,缺陷少,可显著提高ZM5镁合金的耐蚀性能;腐蚀电流密度比基体降低2~3个数量级,阻抗模值提高2个数量级,而涂层封孔后耐蚀性能进一步提高。相比镁合金24 h严重腐蚀,涂层中性盐雾实验1 000 h仅轻微腐蚀,腐蚀造成的质量损耗较小,封孔后涂层未见明显腐蚀,可为镁合金提供长效防护。  相似文献   
4.
高比重钨合金是一种具有高密度,高机械强度和良好的耐腐蚀性等特性的复合材料,并广泛应用于工业和军事中。本文采用沉浸实验和电化学实验对两种钨合金(90%W-6%Ni-4%Cu和95%W-3.5%Ni-1.5%Fe)的腐蚀性能进行了研究。结果的表明,当W-Ni-Cu合金发生电偶腐蚀时,W相首先遭到腐蚀,而在W-Ni-Fe合金中,粘结相会先发生腐蚀。电动位极化测量结果表明pH值对高比重合金钨合金腐蚀速率有显著影响,与酸性环境相比较,合金在中性溶液中得到较低的腐蚀速率。根据SEM和EDX的结果分析了合金成分的溶解以及腐蚀产物的生成等腐蚀机理。  相似文献   
5.
金属镁在水溶液中的阳极极化行为与金属腐蚀电化学理论相悖,表现出阳极析氢行为,而且析出的氢气量随着阳极极化电压的升高而增大。这种被称为"负差数效应"的现象一直是金属镁腐蚀电化学研究的热点。本文首先详述了"负差数效应"的内涵和本质,随后综述了揭示"负差数效应"机理的假设和理论,最后分析了当前的假设和理论存在的有关假设无法实验验证、理论无法自洽等问题。指出了未来研究的侧重点是通过原位电化学技术、修正电化学参数等方向上揭示阳极析氢行为的机理,以期完善金属腐蚀理论。  相似文献   
6.
高比重钨合金是一种具有高密度,高强度和良好的耐腐蚀性等特性的复合材料。采用沉浸试验和电化学试验对2种钨合金(90%W-6%Ni-4%Cu和95%W-3.5%Ni-1.5%Fe)的腐蚀性能进行了研究。结果表明,当W-Ni-Cu合金发生电偶腐蚀时,W相首先遭到腐蚀;而在W-Ni-Fe合金中,粘结相会先发生腐蚀。动电位极化测量结果表明,pH值对高比重钨合金腐蚀速率有显著影响,与酸性环境相比较,合金在中性溶液中腐蚀速率较低。根据SEM和EDX的结果分析了合金成分的溶解以及腐蚀产物的生成等腐蚀机理。  相似文献   
7.
基于金属镁电化学腐蚀的一般特征,从电化学角度综述了合金化导致的微观结构变化对镁合金腐蚀速率影响的研究进展,包括合金元素、第二相、晶粒尺寸以及晶体缺陷在镁合金的电化学腐蚀中发挥的作用以及对腐蚀速率产生的影响;对利用多组元合金化、微合金化以及微观组织的调控等方法实现镁合金腐蚀性能改善的前景进行了分析;展望了今后基于合金化影响的镁合金电化学腐蚀的研究方向和重点。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号