首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学工业   2篇
金属工艺   3篇
一般工业技术   2篇
  2020年   1篇
  2019年   1篇
  2014年   2篇
  2011年   2篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
为了研究WC含量对Ni60合金涂层耐腐蚀性能的影响规律及相关机制,向Ni60合金粉体中添加不同质量分数的WC,通过高频感应重熔和强制冷却技术,在45#钢表面制备WC添加的Ni60/WC复合定向结构涂层,采用SEM、EDS、XRD、电化学性能测试和浸泡实验等检测手段分析研究了WC颗粒增强Ni60合金的定向结构复合涂层的耐腐蚀性能及其机制。结果表明:随着WC添加量的增加,极化电阻先增大后减小,WC添加量10%时达到最大值9710.8 Ω;腐蚀电流密度先减小后增大,WC添加量10%时最小为1.34×10-6 A/cm2。WC添加量对涂层显微形貌、元素分布、物相均有影响,进而影响涂层耐蚀性能。  相似文献   
2.
采用先驱体转化工艺(PIP)制备三维炭纤维增强碳化硅陶瓷基复合材料(3D-Cf/SiC)构件。通过三点弯曲强度方法分析构件材料的弯曲性能及破坏规律。研究表明:采用三维炭纤维编织的陶瓷基复合材料构件,其复合材料基体的主要成分为β-SiC,材料具有较高的弯曲性能,可达511MPa,构件材料与采用同种PIP工艺制备的3D-Cf/SiC陶瓷基复合材料相比较,强度降低26.4%,这可能是由制备的构件其致密度较低以及后续加工等因素所致。3D-Cf/SiC陶瓷基复合材料在弯曲断裂过程,材料纤维与纤维束被大量拔出,表现出类似金属的较好假塑性断裂特征。  相似文献   
3.
目的为有效提高涂层的耐磨性能,提出制备定向结构复合涂层,通过评估其性能及结构特征,探索定向结构在涂层制备中的应用。方法以Ni60/铝青铜为研究对象,采用感应重熔+强制冷却技术对预制涂层进行处理,制备定向凝固复合涂层。借助销盘式摩擦试验机、OM、SEM、XRD、显微硬度计对其摩擦学行为、微观组织形貌、显微硬度进行表征研究。结果摩擦磨损试验表明,相对于预制涂层,在载荷分别为50、100、150 N时,重熔涂层的体积磨损率分别降低了85%、80%、82%,而定向凝固涂层的体积磨损率分别降低了93%、84%、86%,定向凝固涂层具有更好的耐磨性能。微观结构分析表明,重熔涂层和定向凝固涂层与基体均形成了牢固的冶金结合,而定向凝固涂层组织基本控制了晶粒沿着热流方向生长,并形成硬质相包裹枝晶的裹壳结构。定向凝固涂层随载荷的升高,摩擦系数保持稳定。结论通过感应重熔+强制冷却技术制备了定向凝固Ni60/铝青铜复合涂层,其定向结构的形成使涂层具有更加优越的耐磨性能。  相似文献   
4.
以炭毡作为纤维增强体,采用化学气相渗透工艺研制出低密度C/C复合材料,进而以低密度炭/炭复合材料为预制体,采用聚碳硅烷和有机锆前驱体作为复相陶瓷前驱体,采用先驱体浸渍裂解工艺成功制备出ZrC/SiC多组元改性C/C复合材料试样。借助万能电子试验机和扫描电镜进行材料的力学性能和微观结构分析。结果表明:包含ZrC颗粒的SiC相双组元弥散分布在C/C复合材料基体中,且随着前驱体中有机锆含量的增加,力学性能出现先升后降的趋势,当有机锆前驱体质量分数为25%时,改性C/C复合材料弯曲强度和弯曲模量较优,分别为241 MPa和17.25 GPa。。  相似文献   
5.
结合化学气相渗透(CVI)和聚合物先驱体浸渍裂解(PIP)工艺制备出炭纤维增强碳基(C/C)、炭纤维增强碳-碳化硅基(C/C-Si C)和炭纤维增强碳-硅-锆-氧(C/C-Si-Zr-O)复合材料,并对其微观形貌、物相结构、力学性能和导热性能进行测试和表征。结果表明,C/C-Si-Zr-O复合材料在外部载荷作用下,纤维脱黏和纤维拔出等应力释放效应显著,弯曲强度优于C/C和C/C-Si C复合材料;此外,C/C复合材料基体热解炭的导热系数较高,复合材料孔隙率小,结构缺陷较少,声子的平均自由程较长,因此具有较高的导热系数(水平方向69.09 W/(m·K),垂直方向25.28 W/(m·K))。  相似文献   
6.
连续碳纤维增强碳化硅(Cf/SiC)复合材料以其耐高温、高强度、低密度等特性已成为新一代航空发动机高温部件的首选材料。采用聚合物浸渍裂解法(PIP)成功制备出适用于航空发动机高温部件的Cf/SiC复合材料,其密度为1.83g/cm3。在发动机典型工作温度1200℃条件下,通过本工艺制备Cf/SiC材料的弯曲强度高达712MPa,略高于材料的室温弯曲强度(641MPa)。这一现象可能由碳纤维在冷却过程中产生的残余应力引起。此外,在温度为1200℃、加载压力120MPa的条件下,材料的稳态高温蠕变速率为2.08×10-3%/h,基体开裂和界面滑动可能是材料宏观变形的主要原因。  相似文献   
7.
通过对芳基乙炔树脂的固化动力学研究确定其适宜的固化工艺。采用DSC和流变分析得到芳基乙炔树脂的特征固化参数及其固化度与温度的关系曲线。结果表明,树脂的起始反应温度为127.1℃,反应峰值温度164.2℃,终止反应温度195.1℃。固化动力学参数为:表观活化能E=190.12kJ/mol,反应级数n=1.87,频率因子A=1.995×1019。芳基乙炔树脂的加压固化温度为110~115℃,其起始固化温度为115℃。固化工艺为:115℃/8h+120℃/8h+140℃/2h+160℃/2h+180℃/2h+200℃/2h+220℃/4h。芳基乙炔树脂凝胶前固化过程由化学反应控制,凝胶后属于扩散控制,因此在凝胶时需延长固化时间。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号