首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   4篇
金属工艺   9篇
机械仪表   1篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2007年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
本文采用座滴法在真空下系统研究了硼含量对TiZrNiCu/Ti60润湿性的影响,且在940°C保温10分钟条件下实现了与的钎焊。通过SEM、XRD以及剪切实验研究了界面显微组织及剪切力学性能。添加B元素可以与Ti原位合成TiBw,从而细化界面的显微组织。当B含量为0.3 wt %时,TiBw-TC4 /TiZrNiCu-B/Ti60接头的最大剪切强度为177 MPa,比无B含量的接头强度高65%。然而,过量的B含量使TiZrNiCu-B在Ti60合金基体上产生大量的TiBw,导致润湿性恶化,在钎焊接头形成微孔和未焊合区域,从而使剪切强度下降。  相似文献   
2.
为研究钎焊温度对TC4/Ti60接头组织及力学性能的影响,采用纯铜箔作为中间层对TC4与Ti60合金进行接触反应钎焊,钎焊温度范围为970~1 010℃.采用SEM,EDS,XRD,拉剪试验对接头组织及力学性能进行研究.结果表明,接头的典型界面组织为TC4/α-Ti+Ti_2Cu/Ti_2Cu/Ti Cu/Ti_2Cu/α-Ti+Ti_2Cu/Ti60.随着钎焊温度的升高,基体侧的反应扩散层厚度增加,钎缝厚度及Ti-Cu金属间化合物含量逐渐减少,钎缝成分趋于均匀化.接头抗剪度随钎焊温度的升高先增加后减少,当钎焊工艺为1 000℃保温10 min时,接头抗剪强度最高为130 MPa.断口分析表明,接头断裂于钎缝与扩散反应层之间,断裂方式为准解理断裂.  相似文献   
3.
以制造轻量化超薄金属热防护结构为目标,首先采用真空钎焊方式制备了GH99超薄夹层结构;通过光学显微镜及扫描电子显微镜对夹层结构的钎焊界面及母材的微观组织进行了表征;通过万能试验机对夹层结构的界面剥离强度、面内与面外压缩性能进行了测试,并与有限元模拟结果进行对比.结果表明,钎焊前后母材晶粒由退火态孪晶组织转变为等轴组织;钎焊接头主要为Ni(s, s)和Ni3Si的共晶组织,并伴随部分Cr(Mo, Ni)固溶体、Ni2Si及NiSi2相;界面剥离在薄壁面板上失效;夹层结构面内与面外的压缩失效均表现为屈曲失效,模拟结果与试验结果一致.  相似文献   
4.
采用AgCu28钎料实现了TC4钛合金与QCr0.8铬青铜的真空钎焊,利用SEM, EDS以及XRD等分析方法确定TC4/AgCu/QCr0.8接头的典型界面结构为TC4钛合金/CuTi +Cu3Ti2 +CuTi2/Ag(s,s) +Cu4Ti/Ag(s,s)+Cu(s,s)/QCr0.8铬青铜. 研究了工艺参数对接头组织和性能的影响. 结果表明,随着钎焊温度和保温时间的增加,钎缝中银铜共晶组织减少,钛铜化合物增多. 接头抗剪强度随钎焊温度的升高先增加后降低,在钎焊工艺参数为890 ℃/0 min时,获得最大抗剪强度449 MPa.保温时间的延长使得接头脆性钛铜化合物增多,接头性能下降,因此随保温时间延长接头抗剪强度显著降低.  相似文献   
5.
卞红  田骁  冯吉才  高峰  胡胜鹏 《焊接学报》2018,39(5):33-36,68
采用TiZrNiCu非晶钎料实现了TC4和Ti60异种钛合金的真空钎焊连接,利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等分析手段研究了钎焊工艺参数对接头界面组织结构及力学性能的影响. 结果表明,TC4/TiZrNiCu/Ti60钎焊接头的典型界面结构为:TC4/α-Ti+β-Ti+(Ti,Zr)2(Ni,Cu)/Ti60. 随着钎焊温度升高或保温时间延长,片层状α+β相逐渐填充整条钎缝,(Ti,Zr)2(Ni,Cu)相含量减少且分布更加均匀. 接头室温抗拉强度随钎焊温度或保温时间的增加均先增大后减小,在990 ℃/10 min钎焊条件下所获接头抗拉强度达到最大为535.3 MPa. 断口分析结果表明,断裂位于钎缝中,断裂方式为脆性断裂.  相似文献   
6.
为解决裸(SiC)P在应用中存在的不足,提出(SiC)P表面低成本化学改性的思路.采用简单的化学镀技术,改进氧化、亲水、敏化和活化的前处理工艺,对(SiC)P进行表面化学改性.确定了最佳的试验工艺,获得了镀层连续、无光滑(SiC)P裸露的较高质量的碳化硅复合粉体[简写为(Ni/SiC)P],通过SEM、EDS、XRD、TEM等测试,结果表明:改性后的(Ni/SiC)P较改性前的(SiC)P导电性有所提高,形貌、组成发生改变.同时分析了热处理对(Ni/SiC)P的影响,结果表明:随着温度的升高,(Ni/SiC)P表面改性层中的镍由非晶态转化为晶态.  相似文献   
7.
采用Ag-Cu O钎料实现了Al N陶瓷与自身的空气反应钎焊。研究了Cu O含量、钎焊温度和预氧化温度对界面组织及力学性能的影响规律,分析了连接机理。当钎料成分为Ag-6 mol%Cu O,在1000℃/5 min的钎焊参数下,Al N/Ag-Cu O/Al N接头可获得最高的抗剪切强度为13.9 MPa。采用SEM、EDS及XRD对其接头界面显微组织、断口形貌及成分进行了分析。典型接头界面组织结构为Al N/Cu Al_2O_4/Cu O/Al N+Ag+Cu O/Cu O/Cu Al_2O_4/Al N。然而,在该条件下无法获得无缺陷的接头。为了降低残余热应力获得无缺陷的接头,对Al N陶瓷采用预氧化处理,在Al N陶瓷表面形成一层Al_2O_3层。当预氧化参数为1 000℃/5 h时,Al N陶瓷表面的Al_2O_3层厚度约为10μm。采用成分为Ag-6 mol%Cu O的钎料,在1 000℃/5min的钎焊参数下,对预氧化后的Al N陶瓷进行连接,获得了无缺陷的接头,接头典型界面显微组织为Al N/Al_2O_3/Cu Al_2O_4/Cu O/Ag+Al_2O_3/Cu O/Cu Al_2O_4/Al_2O_3/Al N。接头的抗剪切强度最高为22.6 MPa,与未氧化的Al N陶瓷接头相比提升了62.6%。接头进行抗剪切测试时,断面主要出现在Al N陶瓷母材。  相似文献   
8.
为研究钎焊温度对Ti60/Si3N4接头组织与力学性能的影响,采用Ag-28Cu共晶钎料在870~910℃温度区间,保温10 min条件下进行钎焊连接.利用扫描电子显微镜、能谱仪对钎焊接头界面组织进行分析,得到的典型接头界面组织结构为Ti60/Ti-Cu化合物/Ag(s,s)+Cu(s,s)/Ti-Cu化合物/Ti5Si3+TiN/Si3N4,并对钎焊接头的组织演变过程进行了分析.结果表明,随着钎焊温度的升高,Ti60侧的Ti-Cu化合物反应层与Si3N4陶瓷侧的Ti5Si3+TiN反应层厚度逐渐增加,Ag(s,s)与Cu(s,s)含量减少,同时,扩散至Si3N4陶瓷侧的Ti元素与液相中Cu元素反应生成Ti-Cu化合物并在Ti5Si3+TiN反应层中形核.剪切测试表明,在钎焊温度880℃,保温10 min工艺参数条件下获得的接头最大抗剪强度为61.7 MPa.  相似文献   
9.
采用表面反应金属化的方法实现了石墨与紫铜的低温连接。研究了温度对金属化层形貌的影响,同时对紫铜/石墨接头的力学性能进行了测试。在金属化过程中,Cr元素与石墨反应生成Cr_3C_2反应层,为得到以β-Sn为基体的金属化层提供必要条件。高的金属化温度,加强了Cr与石墨的反应速率,界面反应层逐渐由不连续变为连续状态,且厚度逐渐增加至2μm。接头的典型界面结构为:紫铜/Cu_6Sn_5/β-Sn/Cr_3C_2/石墨。随着时间延长,钎缝厚度逐渐减小,抗剪强度先增加后减小。接头全部断裂于石墨基体中,时间为80 s时得到的钎缝厚度最有利于缓解应力,此时得到最大的抗剪强度约25 MPa。  相似文献   
10.
采用座滴法在真空下研究了硼含量对TiZrNiCu/Ti60润湿性的影响,且在940℃保温10 min条件下实现了其与TiBw-TC4的钎焊。通过SEM、XRD以及剪切实验研究了界面显微组织及剪切力学性能。结果表明,添加B元素可以与Ti原位合成TiBw,从而细化界面的显微组织。当B质量分数为0.3%时,TiBw-TC4/TiZrNiCu-B/Ti60接头的最大抗剪切强度为177 MPa,比无B的接头强度高65%。然而,过量的B含量使TiZrNiCu-B在Ti60合金基体上产生大量的TiBw,导致润湿性恶化,在钎焊接头形成微孔和未焊合区域,从而使抗剪切强度下降。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号