首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
化学工业   1篇
金属工艺   5篇
机械仪表   3篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
排序方式: 共有9条查询结果,搜索用时 0 毫秒
1
1.
以主轴改造后的XK7136C数控铣床为平台,以AZ31系镁合金与7075-T651铝合金为研究对象,通过理论计算与磁场仿真,设计出适用于加工铝镁合金结构材料平面的强永磁材料磁极,并采用雾化快凝球形磁性磨粒进行试验,以验证该种光整加工方法的可行性及球形磨粒性能。使用“米字槽”与“田字槽”两种磁极分别对两种材料进行研磨实验。实验结果表明:两种端面开槽方式均可防止磨料的局部堆积,保证磨料的流动性,并使端面磁通密度增大,磁场强度梯度增大,提高研磨效率。两种磁极所研磨表面粗糙度分别为0.126 μm和0.148 μm,端面拥有更大磁通密度的“田字槽”磁极前期研磨效率更佳。  相似文献   
2.
利用雾化快凝法制备的球形磁性磨料,设计合理的交互正交优化实验,对Si_3N_4陶瓷材料进行磁力研磨加工,探究加工Si_3N_4材料的最佳工艺参数组合。并对各影响因素进行分析。通过SEM扫面电镜及白光干涉仪对加工后的表面粗糙度进行分析,探究所能达到的最佳表面粗糙度。结论:当工艺参数为:转速S=1000 r/min,加工间隙δ=2.5 mm,磨料填充量为2.5 g时,经分析可得,工件的平均表面粗糙度由加工前的1.95μm下降到0.56μm。  相似文献   
3.
按照逐级研磨思路,采用目数和磨粒相直径不同的磁性磨料(MAP)对304不锈钢进行磁力研磨光整加工(MAF),工艺条件为:磁极转速1 000 r/min,加工间隙2 mm,磁感应强度1.2 T,磨料填充量2 g。依次采用磨料目数与磨粒相粒径为50~80目/W40、80~120目/W40、120~200目/W7、200~300目/W7的磁性磨料研磨工件2、2、3和5 min(总研磨时间为12 min),工件表面粗糙度由初始的0.646μm降至0.021μm,材料去除量为42.3 mg。而采用200~300目、磨粒相粒径为W7的单一磁性磨料研磨工件时,要降至相同的表面粗糙度耗时30 min。因此,合理选用不同规格的磁性磨料对工件进行逐级研磨能大幅提升研磨效率,使工件表面质量在短时间内就得到明显改善。  相似文献   
4.
目的 针对904L高性能不锈钢工件进行磁力光整加工试验研究,分析加工间隙对不锈钢表面完整性的影响.方法 对不同加工间隙的磁感应强度进行了仿真与测试的对比分析,在不同加工间隙下,采用雾化法制备的新型CBN/铁基球形磁性磨料对904L高性能不锈钢进行磁力研磨加工.利用手持粗糙度仪和精密电子天平对不同间隙下工件表面粗糙度和材料去除量进行测量与分析,利用金相显微镜观察不同加工间隙下工件表面形貌不同变化情况,利用应力测试仪检测不同间隙下工件表面残余应力变化情况,利用润湿角测量仪对不同间隙下工件表面的亲疏水性效果进行观察与分析.结果 当加工间隙为2.5 mm时,CBN/铁基球形磁性磨料磁力光整加工904L不锈钢效果最好.工件表面粗糙度由研磨前的0.5μm下降至0.05μm,5 min内材料去除量可达36 mg,工件表面均匀,划痕被完全去除,同时没有凹坑的产生.工件表面的残余压应力由127.8 MPa增加到318 MPa,工件表面与液滴的润湿角由20°增加至83°,疏水效果达到最好.结论 加工间隙对CBN磁性磨料磁力光整加工904L不锈钢表面完整性有很大影响,当加工间隙为2.5 mm时,工件表面粗糙度最低,表面形貌光整均匀,残余压应力变大,工件的疲劳强度增强,工件表面疏水性变好,达到最佳研磨效果.  相似文献   
5.
磁力研磨光整加工ZrO2陶瓷材料试验研究   总被引:3,自引:3,他引:0  
目的利用磁力研磨光整加工技术提高ZrO_2陶瓷材料的表面质量,并探究主要工艺参数对ZrO_2陶瓷表面质量的影响规律,得到磁力研磨光整加工陶瓷材料的最优工艺参数组合。方法采用开米字槽的研磨磁极头,利用球形磁性磨料对ZrO_2陶瓷材料进行磁力光整加工。借助XK7136C数控铣床对工件材料进行加工试验,探究其表面改性能力。借助白光干涉仪和扫描电镜对抛光后的表面形貌进行检测分析,采用单因素试验法探究主轴转速、加工间隙、磨料填充量和进给速度对表面粗糙度的影响,并设计合理的交互正交优化试验,寻求最佳的工艺参数组合。结果在磁力研磨光整加工ZrO_2陶瓷材料过程中,当转速S=1000 r/min,加工间隙δ=2.5 mm,磨料填充量m=2.5 g,进给速度v=15 mm/min时,工件平均表面粗糙度可由研磨前的1.950μm下降到0.493μm。通过白光干涉仪和扫描电镜等对材料表面的检测分析可知,加工后工件的表面毛刺大大减少,表面质量得到了改善。结论采用磁力研磨光整加工技术和最佳参数组合,可以有效地降低ZrO_2陶瓷材料的表面粗糙度,得到高质量的表面。  相似文献   
6.
为了研究磁力光整加工工艺对SLM制备的TC4钛合金表面完整性的影响,采用响应曲面法对钛合金试样进行三因素三水平的响应曲面分析试验。首先使用数控成形磨床对SLM制备的TC4钛合金试样进行磨削加工,磨削加工将钛合金试样表面粗糙度从6μm(SLM成形后)下降到约0.6μm,使带有球状体和凹坑等缺陷的粗糙表面演化为有划痕和孔隙的细表面。然后在不同的磁力光整加工工艺参数下,利用XK7136C数控铣床改造的磁力光整加工系统,采用雾化法制备的新型Al2O3/铁基球形磁性磨料对钛合金试样进行磁力光整加工,分析加工后钛合金试样的粗糙度、表面形貌以及残余应力,并确定最佳工艺参数。结果表明:当磁力光整加工工艺参数分别为主轴转速1 000.00 r/min,加工间隙1.50 mm,进给速度15.00 mm/min时,磁力光整加工效果最好,钛合金试样表面粗糙度由初始的0.6μm降低到0.065μm,试样表面均匀,划痕和表面缺陷被有效去除,达到接近镜面效果。试样表面的残余应力由最初的拉应力+297.4MPa转变为压应力-237.8MPa。利用磨削加工和磁力光整加工技术对SLM制备的TC4钛合金试样进行光整加工,可...  相似文献   
7.
磁力研磨是光整加工ZrO_2陶瓷材料的重要方法,但由于陶瓷材料的高强度及脆硬性,用一般开矩形槽的磁极头研磨加工ZrO_2存在着研磨效率低,加工效果不理想等问题。因此在设计磁极头时,采用N45永磁极作为材料,设计开环形槽,由底部向上拔模至一定深度,由此设计的磁极来加工ZrO_2陶瓷材料,利用ANSYS仿真了磁极开环形槽与矩形槽的磁场强度分布。结果表明:环形槽磁极的磁场分布较集中,并且开锥度后磁场分布较强。通过试验验证,磁极头开环形槽能够改善磁场梯度分布,提高研磨压力。研磨20 min后,ZrO_2陶瓷材料的表面粗糙度从1.7μm下降到0.45μm,加工效率显著提高,表面质量明显改善。  相似文献   
8.
管道、管件或器材连接处所使用的法兰盘在加工时因其内表面会产生微裂纹、褶皱等缺陷,导致使用寿命下降。用传统的抛光工艺难以实现对法兰盘管内表面的光整加工,使用磁力研磨加工工艺却可以很好地解决这一难题。通过对XK7136C数控铣床的主轴进行改造而成的研磨试验平台,其磁极主轴在给定数控程序的走刀路径下,带动侧面开槽的磁极进行转动,从而实现磁性磨粒对法兰盘管内表面光整加工的目的。对磁研磨法加工法兰盘管内表面的原理及磁性磨粒的受力情况进行了的分析,试验结果表明:法兰盘零件弯管内表面经过研磨后,原有的表面质量明显改善,表面粗糙度的值由3.46μm降低到1.18μm,验证了磁力研磨对法兰盘管内表面的光整加工效果良好。  相似文献   
9.
在磁力研磨加工ZrO 2材料过程中,分析了单颗磁性磨料在加工区域内的受力情况,并对研磨压力的形成进行探讨,利用公式推导计算研磨压力,通过研磨压力的大小分析了磁力光整加工中材料的去除机理,包括脆性断裂去除、塑性变形去除和粉末化去除。通过白光干涉仪、扫描电子显微镜等分析检测仪器对磁力研磨加工后的工件表面进行检测,可知在其他条件相同时,磁力研磨加工后的工件材料精度高于传统的草轮抛光精度,可达到0.59μm。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号