首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
金属工艺   5篇
机械仪表   3篇
石油天然气   1篇
  2018年   2篇
  2017年   6篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
目的通过求解往复运动齿轮齿条在不同换向位置时一个啮合周期内的压力、膜厚和温度,来获得往复运动齿轮齿条机构换向过程发生在沿啮合线上不同位置时的润滑状况,为往复运动齿轮齿条机构的润滑设计提供理论依据。方法将齿轮齿条的传动模型简化为圆柱与无限大平面之间的运动,建立往复运动齿轮齿条传动的热弹流润滑模型。压力求解采用多重网格法,弹性变形采用多重网格积分法,计算得到往复运动齿轮齿条过程中在不同换向位置时一个啮合周期内的中心压力、中心膜厚、最小膜厚和最高温度,并与现有的实验结果进行比较验证。结果无论换向位置处于啮合线上哪个区域,换向点膜厚在整个换向过程中仍然最小,且换向过程一开始的减速并没有导致油膜压力直接降低,而是升高后再降低,产生压力波动。往复运动齿轮齿条换向位置越靠近啮出点,膜厚越厚。结论往复运动换向过程导致润滑状态变差,换向点仍然是往复运动齿轮齿条润滑过程中的危险点,换向位置越靠近啮出点,膜厚越大,但是整个换向过程必须发生在单齿啮合后的双齿啮合区。  相似文献   
2.
目的从磨削液压力及润滑方面找到减少磨粒磨损、磨削热和降低工件表面粗糙度的方法。方法基于实际情况,将砂轮突出的磨粒分布函数和工件在磨削之前存在的粗糙度函数等效为余弦函数,对陶瓷结合剂CBN砂轮磨削45号钢而产生的流体压力和膜厚进行了分析。结果考虑砂轮和工件的表面粗糙度时,压力波动集中在中心区域,磨削区最大压力和最大膜厚明显增大。在考虑热效应的情况下,当两表面波长相等、幅值同时增大时,最大膜厚及平均膜厚增大,而幅值相等、波长增大时,润滑情况没有改善;当砂轮表面幅值波长相等且变大时,最大膜厚及平均膜厚增大,由此也可以得出当砂轮表面幅值波长不变,工件表面如此变化时结果相同;当两表面幅值和波长不相等且都成倍增大时,最大膜厚及平均膜厚增大。结论膜厚增大利于润滑时,能降低磨削温度,减少磨削烧伤和热变形,降低工件磨削后的表面粗糙度,减少非工作磨粒的磨损,减少砂轮修正次数,延长砂轮寿命。但是膜厚不会无限增大,因为磨削区域并不封闭,在实际工程中可依据此理论来确定最优解,优化磨削过程。  相似文献   
3.
目的通过对往复运动齿轮齿条传动过程中压力、膜厚、温度的计算,获得往复运动齿轮齿条的润滑状况,为机构的设计提供理论依据。方法将齿轮齿条的传动模型简化为圆柱与无限大平面之间的运动,建立往复运动齿轮齿条传动的热弹流润滑模型。采用Ree-Eyring流体,压力求解采用多重网格法,弹性变形采用多重网格积分法,计算得到齿轮齿条往复运动过程中的中心压力、中心膜厚、最小膜厚和最高温度,并与单向运动情况比较。结果与单向运动相比,往复运动由于在换向过程中存在加速、减速过程,降低了齿轮齿条机构在啮合周期内润滑油膜厚度,啮合线上变速过程始末附近区域膜厚和压力都会产生一定程度的波动。换向瞬时,受挤压效应的影响,产生油膜凹陷,油膜变薄,润滑状态变差。结论在计算往复运动齿轮齿条润滑油膜与压力时,存在换向的啮合周期需要着重讨论。在工程实际中设计往复运动齿轮齿条润滑时,应着重考虑单双齿啮合转换点与换向点处的润滑情况。  相似文献   
4.
目的研究不同季节或地域以及外部降温对水润滑动静压轴承热弹流的影响。方法选取小孔式水润滑动静压滑动轴承为研究对象,采用考虑了热效应的Reynolds方程对水润滑动静压滑动轴承进行热弹流润滑分析,研究了不同温度边界条件下三种轴瓦材料的水润滑动静压滑动轴承润滑膜的温度变化及其压力膜厚的变化。结果当轴瓦、轴颈的温度相同且异于润滑剂初始温度(313 K)时,轴瓦、轴颈温度越低,润滑膜的温度越低,在入口区和出口区出现明显的温度变化,轴瓦、轴颈温度越低,润滑膜的膜厚越大,第二压力峰越明显。轴承外部降温,使轴瓦温度(297.35、281.7 K)保持低于润滑膜以及轴颈的初始温度(313K),轴瓦温度越低,润滑膜的温度越低,入口区以及出口区的温度也发生变化,润滑膜的膜厚增大,第二压力峰增大。对比轴瓦、轴颈温度同时降低和轴瓦温度降低这两种工况,润滑剂温度的变化趋势与压力膜厚的变化趋势相同,但变化幅度不同。结论由于轴承所处季节或地域不同,轴瓦、轴颈的温度异于润滑剂初始温度,外部环境温度越低,润滑膜的膜厚越大,有利于润滑。通过外部降温的形式使轴瓦保持低温状态,同样可以使润滑膜的膜厚增大,有利于润滑。  相似文献   
5.
塔里木盆地罗布泊地区石炭系混合沉积层序   总被引:2,自引:0,他引:2  
对塔里木盆地罗布泊凹陷北部的石炭系露头剖面进行了野外详细实测,根据古生物特征,岩性、岩相分析和地层对比,对地层层位进行了划分、对比。由露头区向覆盖区进行了地震追踪,证实覆盖区内也有石炭系分布。古生物、岩性、岩相、沉积构造和粒度等资料证实,本区石炭系在垂向上发育典型的滨浅海碎屑岩和台地相碳酸盐岩互层的混合沉积层序。总结出了适合这种混合沉积层序的相模式,依据这种相模式对本剖面石炭纪的岩相古地理进行了简单分析。在这种典型的沉积层序中,发育着良好的烃源岩和储集层,使研究区内的石炭系具备了有利的生储盖组合条件,具有良好的油气勘探远景。  相似文献   
6.
目的通过对传动过程中压力和膜厚的计算,提高齿轮齿条机构润滑性能,降低齿轮齿条传动过程中的磨损。方法简化齿轮齿条传动过程载荷图谱,运用简化的实际载荷曲线,建立齿轮齿条啮合过程的弹流润滑计算模型,对齿轮齿条啮合过程中的瞬态弹流润滑问题进行研究。考虑啮合过程中单、双齿啮合时不同的载荷,计算一个啮合周期沿啮合线上的中心压力、中心膜厚、最大压力、最小膜厚以及啮入点、节点、啮出点压力和膜厚,还有双齿啮合区转换为单齿啮合区、单齿啮合区转换为双齿啮合区前后瞬时的压力和膜厚。压力求解采用多重网格法,弹性变形采用多重网格积分法,得到了齿轮齿条传动机构的瞬态弹流润滑完全数值解。结果载荷突然升高引起中心压力突然升高,中心膜厚最大值出现在双齿啮合区与单齿啮合的临界点。啮合线上最小膜厚和最大压力出现了波动。计算得出啮入瞬时膜厚最薄,润滑状况较差。结论沿啮合线各瞬时压力与膜厚不断变化,载荷突变引起的压力突变应通过提高轮齿强度等方式防止表面疲劳破坏的产生。整个啮合过程中,啮入点为危险点。  相似文献   
7.
建立了污染物离心附着的弹流润滑几何模型,采用考虑了热效应的Reynolds方程,针对水润滑动静压滑动轴承因为润滑剂污染的问题进行热弹流理论分析。研究了污染物离心附着现象对轴瓦表面纹理的影响以及接触区润滑膜的压力膜厚变化,分析了由于污染物离心附着堵塞进水孔对接触区润滑膜压力膜厚的影响,探究了污染物附着层对接触区温度场的影响。结果显示:污染物的离心附着现象有效改善了轴瓦表面的粗糙形貌,并缓解了接触区的膜厚波动现象;污染物对进水孔的堵塞程度越大,供水压力越小,接触区的最小膜厚越小,最大压力越大,不利于轴承润滑;污染物附着层对水润滑动静压滑动轴承接触区的温度场有影响,当污染物与轴瓦材料的物性参数相差越大温度场变化越大,反之则变化不大。  相似文献   
8.
将齿轮齿条的传动模型简化为圆柱与无限大平面之间的运动,建立考虑齿轮和齿条齿面粗糙纹理影响的齿轮齿条传动的热弹流润滑模型。采用牛顿流体,压力求解采用多重网格法,弹性变形采用多重网格积分法,计算得到不同粗糙纹理下的压力与膜厚,并与光滑表面进行比较,同时比较考虑热效应与等温情况下的压力与膜厚。计算结果表明:受粗糙纹理的影响,齿轮齿条传动机构的压力、膜厚和温升出现波动,最小膜厚变薄;矩形和三角形粗糙纹理表面粗糙峰和粗糙谷内都会形成局部的弹流现象,产生局部压力峰;考虑热效应时粗糙纹理表面的温升呈现波动,而压力和膜厚的波动幅度更大,考虑热效应的齿轮齿条传动机构的弹流润滑分析更符合工程实际。  相似文献   
9.
建立水润滑动静压滑动轴承的弹流润滑几何模型,采用考虑热效应的Reynolds方程,对水润滑动静压滑动轴承进行弹流理论分析,计算一定供水压力下当润滑剂局部最高温度达到临界值时不同的速度、载荷极限值;分析润滑介质、轴瓦材料以及供水压力变化对速度、载荷达到极限值时的临界温度曲线的影响,得到润滑剂局部最高温度达到临界温度时的轴承速度和载荷极限值的临界温度曲线,并通过拟合得到曲线的函数表达式。研究结果显示:海水润滑下的临界温度曲线高于纯水润滑,塑料轴瓦的临界温度曲线高于陶瓷轴瓦;供水压力对不同轴瓦材料的临界温度曲线变化趋势影响不同,对不同润滑介质的临界温度曲线的变化范围影响不同。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号