首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
金属工艺   4篇
  2024年   1篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
目的设计三维网状石墨烯(3D framework carbon, 3DFC)作为PAO-6基础油添加剂,改善基础油的摩擦磨损性能,提高基础油的抗断油能力。方法使用十八胺修饰得到亲油的3DFCs,将0.001g 3DFCs粉末添加到10 g PAO基础油中,超声分散30 min,得到稳定分散的3DFCs润滑油。利用场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、能量分散X射线仪(EDX)、傅里叶变换红外光谱仪(FTIR)和拉曼光谱仪(Raman)分析了3DFCs的微观形貌和结构。利用CSM摩擦试验仪器评估了3DFCs作为基础油添加剂的摩擦学性能,并用扫描电镜、拉曼光谱对磨斑及磨痕成分进行了分析。结果经十八胺修饰的3DFCs的亲油性得到提高,可在PAO-6基础油中稳定分散。3DFCs作为PAO-6基础油添加剂(0.01%),在非断油摩擦情况下,其磨损率较PAO-6基础油降低了约1个数量级,而较0W-50机油并未降低。在断油摩擦情况下,PAO-6基础油和0W-50机油易发生摩擦失效,3DFCs润滑油能保持平稳有效摩擦,其抗断油性能最优。结论具有三维结构、石墨层间距大、润滑性能优异的3DFCs作为润滑油添加剂,具有良好的抗断油能力,可以有效地保护摩擦部件免遭损坏。  相似文献   
2.
类金刚石(DLC)薄膜是一种良好的固体润滑剂,能够有效延长机械零件、工具的使用寿命。DLC基纳米多层薄膜的设计是耐磨薄膜领域的一项研究热点,薄膜中不同组分层具备不同的物理化学性能组合,能从多个角度(如高温、硬度、润滑)进行设计来提升薄膜力学性能、摩擦学性能以及耐腐蚀性能等。综述了DLC多层薄膜的设计目的与研究进展,以金属/DLC基纳米多层膜、金属氮化物/DLC基纳米多层膜、金属硫化物/DLC基纳米多层膜以及其他DLC基纳米多层膜为主,对早期研究成果及现在的研究方向进行了概述。介绍了以上几种DLC基纳米多层膜的现有设计思路(形成纳米晶/非晶复合结构、软/硬交替沉积,诱导转移膜形成,实现非公度接触)。随后对摩擦机理进行了分析总结:1)层与层间形成特殊过渡层,提高了结合力;2)软/硬的多层交替设计,可以抵抗应力松弛和裂纹偏转;3)高接触应力和催化作用下诱导DLC中的sp3向sp2转化,形成高度有序的转移膜,从而实现非公度接触。最后对DLC基纳米多层膜的未来发展进行了展望。  相似文献   
3.
目的 二维纳米石墨烯作为添加剂提高传动油的耐磨性能和承载性能,满足重载高速工况下传动油在传递运动形式和能量过程中承载和耐磨性能需求。方法 二维纳米石墨烯作为传动油添加剂,以丁二酰亚胺为分散剂制备了石墨烯传动油,采用FZG齿轮试验机标准方法(NB/SH/T 0306—2013)评价了传动油和石墨烯传动油的耐磨性能和承载性能,通过SEM、Raman、EDS和XPS检测手段分析试验齿轮耐磨及承载机理。结果 二维纳米石墨烯作为添加剂将传动油的承载能力从8级提升至10级。试验齿轮在传动油中表现为黏着磨损和磨粒磨损,齿轮磨损表面有严重的犁沟现象;试验齿轮在石墨烯传动油中磨损表面表现为抛光式的磨损,磨损表面变得光滑。通过Raman、元素面分布和XPS测试结果分析,重载高速运转条件下试验齿轮磨损表面在石墨烯传动油中形成了不连续的多元杂化润滑膜,该润滑膜是由低剪切强度相(石墨烯、硫化物)、硬度和屈服强度比较高的磨损微粒(铁氧化物)和弹性模量较低的无定形聚磷酸盐等组成。润滑膜防止了齿轮材料在高载运转过程直接接触,减小接触面间的剪切强度,提高了耐磨性能和承载能力。结论 二维纳米石墨烯作为一种传动油添加剂,可...  相似文献   
4.
目的 将HiPIMS电源应用于PECVD技术,在304不锈钢管内壁沉积DLC涂层,以提高其机械、耐蚀及摩擦学性能。方法 将HiPIMS电源应用于PECVD技术,并利用空心阴极放电效应在管道内产生高密度等离子体,沉积DLC涂层。通过拉曼光谱、扫描电子显微镜和EDS对DLC涂层的结构和成分进行表征,并通过纳米压痕测试、划痕试验、静态极化曲线和摩擦磨损试验,分别评价304不锈钢管基底和DLC涂层的硬度、膜基结合力、耐腐蚀性能、摩擦学性能和耐磨性。结果 HiPIMS电源应用于PECVD技术可在304不锈钢管内壁沉积DLC涂层。DLC涂层的厚度可达5.60~10.26 μm,硬度可达10~15 GPa,与304管内壁的结合力(Lc2)均大于7 N。DLC涂层的腐蚀电流密度较304不锈钢管基底降低了一个数量级,腐蚀电位也发生了正移。DLC涂层具有良好的润滑效果,摩擦系数低至0.06~0.18,磨损率低至2.5×10-7~8.1× 10-7 mm3/(N?m),远低于304不锈钢管基底的磨损率(80×10-7 mm3/(N?m))。结论 将HiPIMS电源应用于PECVD技术在304不锈钢内壁沉积的DLC涂层具有较高的硬度,与304不锈钢管内壁具有较高的结合力,同时具有优异的耐腐蚀性能和耐磨性以及良好的润滑作用。HiPIMS电源应用于PECVD技术有望应用更长管道内壁DLC涂层的制备。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号