首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  完全免费   4篇
  金属工艺   10篇
  2022年   3篇
  2016年   2篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有10条查询结果,搜索用时 193 毫秒
1
1.
晶须CaCO3和PTFE填充聚醚醚酮复合材料的摩擦学性能   总被引:3,自引:0,他引:3  
用MM200磨损试验机和45钢环配副,研究不同含量碳酸钙(CaCO3)晶须和10%的聚四氟乙烯(PTFE)共同填充聚醚醚酮(PEEK)复合材料的摩擦磨损性能,用扫描电镜观察磨损表面形貌并分析磨损机理。结果表明,随着复合材料中晶须含量增加,摩擦系数持续降低,最低可降到纯PEEK的1/2;复合材料的磨损率随晶须含量的增加先大幅度减小后又缓慢回升,当晶须含量为15%-20%时,磨损率降至3.3×10-7mm3/Nm,仅为纯PEEK的3.6%,20?CO3/10%PTFE/PEEK综合摩擦学性价比较好。CaCO3晶须增强PEEK减少了复合材料在摩擦过程中摩擦副表面粘着和剥层,阻止基体树脂的热塑性变形,同时PTFE的优先粘着转移使得复合材料在对偶件表面形成连续、均匀的转移膜,两者协同有效降低摩擦系数和磨损率,提高材料的摩擦学性能。  相似文献
2.
利用热压成型法制备碳酸钙(CaCO3)晶须和聚四氟乙烯(PTFE)填充的聚醚醚酮(PEEK)基自润滑复合材料.用动态热机械分析仪测试了复合材料的动态力学性能.得到了储能模量、耗能模量及损耗因子随温度变化(25~300℃)的曲线,并和纯PEEK进行比较,分析填充组分对PEEK动态力学性能的影响.结果表明:CaCO_3/PEEK复合材料在玻璃化转变温度(Tg)以下的储能模量比纯PEEK大幅度提高,且随着晶须含量增加而增加;在Tg温度以上,CaCO_3/PEEK复合材料储能模量相对纯PEEK仍保持较高的水平,显著提高了复合材料的高温刚性和热变形温度.加入PTFE使CaCO_3/PEEK复合材料在Tg温度以下的储能模量有所降低,但在Tg温度以上没有衰退.CaCO_3晶须和PTFE的协同作用有助于提高PEEK自润滑复合材料的摩擦学性能.  相似文献
3.
提出了聚醚醚酮预热超声波焊工艺.采用金相观察法考察了预热温度对导能筋铺展程度的影响,采用有限元计算的方法,研究了不同预热温度下焊接界面的温升过程,并对不同预热温度下获得的焊接接头进行了剪切强度测试以及断口分析.结果表明,预热超声波焊工艺可以避免界面密集孔洞的形成,并可将焊接接头强度提高20%以上;聚醚醚酮的预热超声波焊接头存在大直径气孔缺陷以及脆化现象.  相似文献
4.
《表面工程资讯》2007,7(1):21-21
英国Victrex公司最近向市场推出了一系列基于PEEK(聚醚醚酮)和Celazole PBI(聚苯并咪唑)的共聚物。  相似文献
5.
Finite element method was adopted to investigate the temperature profile during ultrasonic welding of PEEK (polyetheretherketone ). The comparison of temperature fields was made among the triangular, semicircular and rectangular energy directors. The results show that the highest temperature appears on the sample surfaces in the welding interface. For triangular and semicircular energy directors, the gradient of their temperature fields become larger with welding amplitude increasing, and the temperature decreases along the normal line of surface. The melting point can be rapidly reached before large scale plastic deformation occurs as welding amplitude exceeds 25 μm for triangular energy and 35 μm for semicircular energy director. But for the rectangular energy director, its temperature field is dispersed even under 35μm welding amplitude.  相似文献
6.
《模具工业》2016,(12):58-60
以汽车保险杠为例,针对较大型的塑件在注射生产过程中容易出现飞边的问题,在模具结构上以PEEK材料替代铁质材料,以降低或控制塑件飞边出现的概率和尺寸的大小,达到保证汽车外饰塑件外观质量的目的。  相似文献
7.
文中报道了一种借助多巴胺在PEEK表面化学镀铜的方法。首先通过非溶剂致相分离法对PEEK表面进行粗化,形成网络状孔洞,然后借助多巴胺的自身氧化聚合在PEEK表面包覆聚多巴胺层,利用聚多巴胺对银离子的吸附和原位还原作用在PEEK表面沉积纳米银颗粒,纳米银颗粒作为催化中心催化化学镀铜反应的进行,从而在PEEK表面镀覆金属铜层。通过SEM、EDS、接触角测试、XRD表征复合材料的形貌、化学组成、润湿性和结晶形态,通过胶带剥离实验评估镀层结合力,使用四探针测试仪测量镀层的方块电阻。结果表明,纳米银可以有效地催化PEEK表面的化学镀铜反应,且镀液稳定,铜层与PEEK的结合力达到5B级;施镀时间为60 min时,由断面图测得的镀层厚度约为3.5μm,方块电阻低至19 mΩ/□。  相似文献
8.
目的 赋予聚醚醚酮(Poly-Ether-Ether-Ketone,PEEK)材料表面良好的导电性,满足其在雷达天线等航空航天领域的应用。方法 采用波长1064 nm的脉冲红外纳秒光纤激光对化学惰性极高的PEEK材料进行表面改性处理,并结合化学镀镍技术,实现激光改性PEEK表面金属层的沉积制备。利用扫描电镜、电阻测试仪、金相显微镜等对PEEK材料表面改性后的微观结构和表面金属层性能进行表征。结果 当激光能量密度较低(Q<60 J/cm2)时,脉冲激光改性PEEK表面主要发生光热作用,基材表面呈周期性起伏的微纳沟槽结构,并分布有少量孔洞特征;当激光能量密度较高(Q≥60J/cm2)时,脉冲激光对PEEK表面的光热作用增强,并具有部分光化学作用,发生光热解化学键断裂,PEEK表面均匀覆盖一层熔融物或熔化后重新凝固的产物。对激光改性后的PEEK表面进行化学镀镍处理,当激光能量密度>10J/cm2时,化学镀镍层致密均匀,镀层表面电阻≤20m?,且镀层结合力良好。结论 对脉冲红外纳秒光纤激光与聚醚醚酮界面处的作用机制进...  相似文献
9.
聚醚醚酮材料(PEEK)具有良好的生物相容性、化学稳定性、X射线可穿透性及优异的力学性能,广泛用于创伤、脊柱和关节等生物医疗领域。然而,PEEK属于生物惰性材料,其骨整合性不足,这在一定程度上限制了该材料在骨修复与替换等领域的发展和应用。等离子喷涂技术由于工艺简单、经济,喷涂涂层的黏结强度高等特点,是解决聚醚醚酮材料骨整合能力不足的重要表面涂层改性技术。首先,简述了等离子喷涂工艺的涂层沉积机理,并分别对等离子喷涂钛以及羟基磷灰石两种常用涂层进行了介绍;其次,从不同喷涂工艺以及喷涂参数对涂层的影响出发,详细介绍了近几年对PEEK基等离子喷涂涂层的结合强度等机械性能的最新研究进展,并对等离子喷涂过程对PEEK基体的机械强度、疲劳强度、热性能和化学降解等初始性能影响进行了总结与评价,详细介绍了PEEK基等离子喷涂涂层体内外生物性能的最新研究进展;最后,展望了等离子喷涂改性PEEK基材料的临床应用前景,以期为未来设计新型PEEK基生物材料提供理论指导。  相似文献
10.
目的 赋予基材PEEK GF30良好的导电性。方法 以磁控溅射镀膜技术在表面沉积Cu膜。分别采用离子注入和等离子体活化两种技术对基材进行界面处理,通过接触角测试、红外光谱测试和界面微观形貌观察,与原始基材展开表面状态对比。再在此基础上进行金属化处理,并对3种不同界面状态下所制膜层的相结构、表面及断口形貌和成分、膜基结合强度进行判定和分析,探讨界面状态的影响因素以及对膜基结合性能的作用机理。结果 注入金属Ti后,表面Ti含量得到了有效提高,但表面润湿性能无明显改变,活化处理后表面极性基团增加、润湿性能大幅提升,为镀膜提供了良好的界面状态。在原始状态、注入和活化后3种不同界面状态下制备的Cu膜均沿Cu(225)择优生长,活化后所制膜层的结晶度最优。原始状态下所制膜层平整性欠佳、膜基交界处异种材料差异明显,涂层附着力保持为5级,结合力<0.1 N;注入后所制膜层平整致密,交界处有Ti微粒产生“锚扎”强化效果,涂层附着力保持为1级,结合力<0.1 N;活化后所制膜层规则均匀,交界处出现缓冲层,金属微粒“锚扎”强化深度和强度效果最佳,涂层附着力保持为0级,结合力提升至15.45 N。结论 金属注入能够改善膜基结合强度,但改善效果受限于注入层深度的影响。等离子体活化处理能够提高表面活性,改善基材表面环境,可有效提高膜基结合强度。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号