首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19673篇
  免费   1354篇
  国内免费   1021篇
电工技术   671篇
综合类   1218篇
化学工业   2425篇
金属工艺   3458篇
机械仪表   1471篇
建筑科学   1743篇
矿业工程   679篇
能源动力   707篇
轻工业   1744篇
水利工程   664篇
石油天然气   657篇
武器工业   174篇
无线电   1074篇
一般工业技术   1659篇
冶金工业   2058篇
原子能技术   123篇
自动化技术   1523篇
  2024年   47篇
  2023年   820篇
  2022年   757篇
  2021年   714篇
  2020年   624篇
  2019年   593篇
  2018年   221篇
  2017年   287篇
  2016年   366篇
  2015年   419篇
  2014年   1068篇
  2013年   745篇
  2012年   1006篇
  2011年   1133篇
  2010年   1110篇
  2009年   1106篇
  2008年   1529篇
  2007年   1329篇
  2006年   1117篇
  2005年   1020篇
  2004年   754篇
  2003年   661篇
  2002年   550篇
  2001年   487篇
  2000年   462篇
  1999年   414篇
  1998年   348篇
  1997年   343篇
  1996年   306篇
  1995年   317篇
  1994年   265篇
  1993年   215篇
  1992年   215篇
  1991年   198篇
  1990年   220篇
  1989年   202篇
  1988年   36篇
  1987年   20篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
建立了激光冲击强化宏观有限元数值模型和细观参量演化数值模型,提出了激光冲击强化三维多尺度模拟方法,分析了激光冲击强化后Inconel 718高温合金残余应力、位错密度、晶粒尺寸的分布规律;考虑激光冲击强化所致残余应力和晶粒细化对疲劳寿命的影响,对Sines疲劳寿命准则进行修正,并进行了试验验证.结果表明:模拟得到试样表面光斑冲击范围内形成了不小于550 MPa的残余压应力,表层区域存在明显的位错增殖,局部晶粒尺寸可细化25%左右,模拟结果与试验结果基本吻合;采用修正Sines准则预测得到的疲劳寿命在3倍分散带内,说明该模型能够较好地预测激光冲击强化后Inconel 718高温合金的疲劳寿命.  相似文献   
2.
为改善钛合金的耐磨性,使用真空辉光等离子体表面合金化技术,对双相钛合金TC4样品进行了等离子体铬化处理.通过纳米压痕对试样的局部硬度和模量进行了测定,并在给定载荷下利用旋转弯曲疲劳机对试样的疲劳性能进行评估.结果 表明:850 ℃下渗铬处理5h后获得的铬合金层由四个子层组成,即Cr沉积层,TiCr2层,Ti4 Cr层和Cr-Ti固溶层;相邻子层的弹性模量和硬度有显著差异,而等离子渗铬处理使TC4钛合金的疲劳性能变差;通过喷丸后处理可以增加等离子体铬化样品的疲劳寿命,这归因于该样品具有最高的残余压应力,显著的加工硬化以及良好的硬度与韧性平衡.  相似文献   
3.
提出一种基于强化学习的生成对抗网络(Reinforcement learning-based Generative Adversarial Networks,Re-GAN)能耗预测方法.该算法将强化学习与生成对抗网络相结合,将GAN(Generative Adversarial Nets)中的生成器以及判别器分别构建为强化学习中Agent(生成器)以及奖赏函数.在训练过程中,将当前的真实能耗序列作为Agent的输入状态,构建一组固定长度的生成序列,结合判别器及蒙特卡洛搜索方法进一步构建当前序列的奖赏函数,并以此作为真实样本序列后续第一个能耗值的奖赏.在此基础之上,构建关于奖赏的目标函数,并求解最优参数.最后使用所提算法对唐宁街综合大楼公开的建筑能耗数据进行预测试验,实验结果表明,所提算法比多层感知机、门控循环神经网络和卷积神经网络具有更高的预测精度.  相似文献   
4.
选择以液冷板作为电动车辆动力电池冷却方式的热管理系统为研究对象,采用仿真模拟的方法,应用有限元仿真软件Ansys建立动力电池-液冷换热器耦合模型,对不同截面流道下的液冷板对动力电池组温度分布的影响进行了研究,并以此为基础,提出导热强化方案,对比分析铝片与石墨片两种导热材料对于控制电池组温度与改善电池组温均性的影响.结果 表明:正方形截面流道较圆形截面流道更能有效降低电池组最高温度及流道进出口压差,但同时会增加电池组的温度不均匀性;导热强化方案可有效改善电池组温均性,但在控制电池组最高温度方面作用不明显,并且同等重量下石墨片的导热强化效果高于铝片.  相似文献   
5.
为了提高高温构件的热疲劳性能、减少表面裂纹,研究激光冲击对ZCuAl10Fe3Mn2合金硬度、表面形貌、残余应力和热疲劳性能的影响。采用扫描电子显微镜(SEM)和能谱仪(EDS)分析合金的显微组织和裂纹形貌。结果表明:在4 J脉冲能量下,激光冲击能显著改善合金的热疲劳性能。在热应力和交变应力的作用下,试样缺口附近组织氧化而变得疏松多孔,促使萌生多条微裂纹。其中,竖直方向的微裂纹变为主裂纹,主要以裂尖前沿空洞连体的形式扩展;其他方向的微裂纹沿晶界生长而发生组织脱落现象。  相似文献   
6.
针对深度确定性策略梯度算法(DDPG)收敛速度比较慢,训练不稳定,方差过大,样本应用效率低的问题,提出了一种基于随机方差减小梯度方法的深度确定性策略梯度算法(SVR-DDPG)。该算法通过利用随机方差减小梯度技术(SVRG)提出一种新的创新优化策略,将之运用到DDPG算法之中,在DDPG算法的参数更新过程中,加入了随机方差减小梯度技术,利用该方法的更新方式,使得估计的梯度方差有一个不断减小的上界,令方差不断缩小,从而在小的随机训练子集的基础上找到更加精确的梯度方向,以此来解决了由近似梯度估计误差引发的问题,加快了算法的收敛速度。将SVR-DDPG算法以及DDPG算法应用于Pendulum和Mountain Car问题,实验结果表明,SVR-DDPG算法具有比原算法更快的收敛速度,更好的稳定性,以此证明了算法的有效性。  相似文献   
7.
针对传统逆强化学习算法在缺少足够专家演示样本以及状态转移概率未知的情况下,求解奖赏函数速度慢、精度低甚至无法求解的问题,提出一种基于相对熵的元逆强化学习方法.利用元学习方法,结合与目标任务同分布的一组元训练集,构建目标任务学习先验,在无模型强化学习问题中,采用相对熵概率模型对奖赏函数进行建模,并结合所构建的先验,实现利用目标任务少量样本快速求解目标任务奖赏函数的目的.将所提算法与REIRL算法应用于经典的Gridworld和Obj ect World问题,实验表明,在目标任务缺少足够数目的专家演示样本和状态转移概率信息的情况下,所提算法仍能较好地求解奖赏函数.  相似文献   
8.
采用磁控溅射方法在烧结钕铁硼磁体表面沉积一层Tb镀层,然后进行晶界扩散热处理,制备出晶界扩散型(Tb,Nd) FeB磁体.通过扫描电子显微镜、电子探针分析仪和磁滞回线测量仪分析了晶界扩散前后磁体的微观结构与磁性能.结果 表明:与NdFe磁体相比,采用晶界扩散方法制备的(Tb,Nd) Fe磁体具有更宽的晶界相,且晶界相在主相晶粒周围连续分布,起到了去磁耦合作用.并且分布在主相晶粒表层的重稀土元素Tb形成了磁晶各向异性场更高的(Nd,Tb)2 Fe14B相.(Tb,Nd) FeB磁体的内禀矫顽力Hcj得到显著提升,其Hcj由NdFe磁体的15.98 kOe提高到23.78 kOe.  相似文献   
9.
针对密集观测场景下敏捷成像卫星任务规划问题求解空间大、输入任务序列较长的特点,综合考虑时间窗口约束、任务转移时卫星姿态调整时间、存储约束和电量约束,对敏捷成像卫星任务规划问题进行建模. 提出融合IndRNN和Pointer Networks的算法模型(Ind-PN)对敏捷成像卫星任务规划问题进行求解,使用多层的IndRNN结构作为算法模型的解码器. 基于Pointer Networks机制对输入任务序列进行选择,使用Mask向量考虑敏捷成像卫星任务规划问题中的各类约束. 基于Actor Critic强化学习算法对算法模型进行训练,以获得最大的观测收益率. 实验结果表明,对于密集观测场景下的任务规划,Ind-PN算法的收敛速度更快,可以获得更高的观测收益率.  相似文献   
10.
针对传统算法、智能算法与强化学习算法在自动引导小车(automated guided vehicle,AGV)路径规划中收敛速度慢、学习效率低的问题,提出一种启发式强化学习算法,并针对传统Q(λ)算法,设计启发式奖励函数和启发式动作选择策略,以此强化智能体对优质行为的探索,提高算法学习效率.通过仿真对比实验,验证了基于改进Q(λ)启发式强化学习算法在探索次数、规划时间、路径长度与路径转角上都具有一定的优势.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号