首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1827篇
  免费   18篇
  国内免费   14篇
电工技术   3篇
综合类   14篇
化学工业   953篇
金属工艺   181篇
机械仪表   120篇
建筑科学   15篇
矿业工程   8篇
能源动力   16篇
轻工业   84篇
石油天然气   20篇
武器工业   1篇
无线电   54篇
一般工业技术   353篇
冶金工业   9篇
原子能技术   8篇
自动化技术   20篇
  2023年   6篇
  2022年   11篇
  2021年   18篇
  2020年   16篇
  2019年   22篇
  2018年   40篇
  2017年   51篇
  2016年   53篇
  2015年   84篇
  2014年   56篇
  2013年   368篇
  2012年   54篇
  2011年   130篇
  2010年   71篇
  2009年   97篇
  2008年   98篇
  2007年   106篇
  2006年   82篇
  2005年   65篇
  2004年   44篇
  2003年   63篇
  2002年   40篇
  2001年   28篇
  2000年   42篇
  1999年   45篇
  1998年   26篇
  1997年   29篇
  1996年   19篇
  1995年   30篇
  1994年   13篇
  1993年   12篇
  1992年   6篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   7篇
  1987年   8篇
  1986年   3篇
  1985年   3篇
  1982年   1篇
排序方式: 共有1859条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(6):8025-8030
In order to meet the high demand for joining ceramic/superalloy composite structure in extreme environments, a novel high-temperature resistant adhesion technique was developed for joining ZrO2 and Inconel 625 by applying an aluminum phosphate emulsion/zirconium sol based adhesive. With increasing temperature, a series of reactions occurred in adhesive, and its high-temperature bonding was attributed to the formation of a composite structure containing various ceramics and intermetallics. The adhesive after RT curing could find direct applications in extreme environments, and provide bonding strength no less than 2.5 MPa in the temperature range of RT-1100 °C. The bonding strength was higher than 4 MPa in the temperature range of 800–1000 °C, which was further attributed to the formation of an effective CTE-gradient relationship among ZrO2, adhesive and Inconel 625, as well as the interfacial reactions between the two substrates. The work broadened the application of adhesion technique and brought new ideas for joining dissimilar engineering materials.  相似文献   
2.
This paper describes a new method to evaluate the friction coefficient at the tool-work interface in machining process where high stress and temperature are caused. In order to examine the feasibility of the proposed method, the present report introduces the method and the results obtained only at room temperature. Ti6Al4V, SUS304, AISI1045, FCD 700, FCD 450 and FC300 were used as work materials, while TiN coated carbide tool, TiAlN coated carbide tool and P15 were used as tool materials. The proposed method provided the friction coefficients of different coatings against different work materials, and demonstrated the variability of friction coefficient and the anisotropy of surface roughness.  相似文献   
3.
《Ceramics International》2020,46(3):2670-2676
In this study, the effect of Fe content on the abrasion behavior of TiC–Fe nanocomposite coatings applied on the CK45 steel substrate by air plasma spray method was investigated. For this purpose, milled TiC powder was prepared at 1, 2, 3 and 4 h milled TiC powder for 4 h was selected as the suitable sample. In the next step, a suitable sample mixture with different iron powder concentrations of 5, 10, 15, 20 and 25% was prepared by mechanical milling. The granulated mixture was applied to the substrate using air plasma spray technique. Microstructural and phase analyzes were performed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). According to the results of Williamson-Hall calculations, the TiC crystallites' size decreased by 49 nm–29 nm, and network strain reached 0.16% by increasing milling time from 1 h to 4 h. Studies have shown that the coatings contain titanium carbide, iron oxide, and titanium oxide, with the number of phases formed depending on the amount of iron in the chemical composition. Investigation of the tribological properties of the coating layer showed that with increased iron content in the coating, the wear resistance of the samples is reduced. Hardness tests on coatings indicate that adding iron to nanocomposite from 5 to 25% reduces hardness from 1025 to 699 Hv. It can be argued that a slight increase in the adhesion strength of the coating to the substrate is due to increased wettability because of the formation of molten iron in the coating.  相似文献   
4.
Optically clear adhesives (OCAs) are key components of touch screen panels (TSPs). It is important that OCAs do not affect the transparent electrodes in TSPs because OCAs are contacted to the transparent electrodes. Therefore, N-vinyl caprolactam (NVC) was incorporated in the composition of an acrylic pressure sensitive adhesive (PSA) with excluding an acidic component to maintain the cohesion for OCA preparation. With increasing amounts of NVC, the tack and peel strength of UV-cured PSA increased, but high amounts of NVC led to decreased peel strength. The UV-cured PSA films were placed in a high temperature and humidity chamber for 8 weeks to investigate the durability and corrosion property under hygrothermal conditions. In this study, the corrosion test method using copper foil was suggested as a simple and economical method and was used to evaluate the effect of NVC on the corrosion property of PSA. This method helped identify suitable OCAs that do not have corrosive property. PSA films containing more than 20 wt% of NVC promoted the corrosion of copper foil under hygrothermal aging conditions. The caprolactam ring was opened by moisture, and the PSA structure morphed into a polar structure during the aging process. This change caused a glass transition shift, an increase in the storage modulus at the rubbery plateau, and an increase in peel strength. The surface free energy of the PSA films also increased due to the increase in the polar property. However, high amounts of NVC caused a decrease in the peel strength after 8 weeks of aging because of increased molecular interactions.  相似文献   
5.
Commonly used polymers and polymer articles have some advantages, e.g. low. But very often they have not very good adhesion, barrier properties, low conductivity, etc. Specialty polymers possessing necessary properties, e.g. fluoropolymers, can be used to fabricate polymer articles. However, practical use of specially synthesized polymers is restricted due to their high cost and complexity of synthesis. It is possible to coat a polymer with another polymer layer with necessary properties but this co-extrusion method is difficult to apply due to a complexity of applied equipment. Also the problems of adhesion between two polymers and polymers compatibility are to be solved. Very often application properties of polymer goods (adhesion, barrier properties, conductivity, etc.) are defined mainly by their surface properties. Hence, it is not necessary to fabricate articles from specialty polymers but simpler, cheaper, and more convenient to apply a surface treatment of articles made from commonly used relatively cheap polymers. In this case, only thin surface layer several nm to several μm in thickness is to be modified and direct fluorination (treatment with mixture of F2 and other gases) can be effectively used. For our research we have chosen common widely used polymers. We targeted to improve hydrophobicity/hydrophylicity, adhesion properties and surface conductivity of polymers. For the first time modification of the surface of high density (HDPE), low density (LDPE) and ultrahigh molecular weight polyethylene (UHMWPE), polypropylene (PP), polyethylene terephthalate (PET) and polyvinylchloride (PVC) was performed by direct fluorination followed by a grafting of acrylic acid, styrene, acrylonitrile, vinylidene chloride, aniline and thiophene from the gas phase. Aniline grafting was studied to improve surface conductivity of polymers. Grafting of polymers was confirmed by ATR and MATR FTIR spectroscopy and energy-dispersive X-ray microprobe spectroscopy (cartography). AFM was used to study polymers surface. Influence of the nature of grafted monomers on the surface energy was studied. It was shown that depending on the nature of a grafted monomer hydrophobicity or hydrophilicity can be markedly improved. The hydrophobicity of modified polymers is not changed and is even improved with time contrary to virgin polymers. For the case of PP and UHMWPE grafting of styrene and acrylonitrile improved anti-graffiti properties (graffiti and pollutions from the polymer surface can be easier removed). For the case of HDPE and LDPE grafting of styrene and acrylonitrile improved printability. Grafting of aniline did not improved electrical conductivity. The uniformity of grafted polymers distribution was investigated by energy-dispersive X-ray microprobe spectroscopy (cartography) for the first time.  相似文献   
6.
Laminated safety glass is widely used in construction and as automotive windshield. When the glass plies break under dynamic loading, the adhesion between the glass plies and the interlayer is key to achieving the required safety performance. However, direct measurement of the interfacial adhesive properties is not possible with the existing test methods. In corresponding calculations, material behaviour is often simplified, which leads to inaccurate results. In this article, a finite element model for the 90° peel testing of laminated glass is studied. Hydrogen bonding at the interface between poly-vinyl butyral (PVB) interlayer and glass is represented in the model by a cohesive zone. It is seen that the experimentally measured peel force can successfully be matched by the simulations, but several combinations of variables can give the same result. Therefore, a parameter study is performed to establish the influence of each variable. It is found that the peel arm, consisting of the PVB and an aluminium backing foil, cannot be regarded as a thin film. Furthermore, the exact shape of the traction-separation law governing the cohesive zone has negligible influence on the simulation results, whereas the combination of interfacial strength and fracture energy fully characterises the delamination. The simulation results show that small-strain material behaviour can no longer be assumed for the PVB material in the vicinity of the crack tip.  相似文献   
7.
《Ceramics International》2021,47(23):32699-32709
Digital light processing (DLP)-based ceramic stereolithography has attracted significant attentions due to the high printing speed and high dimensional accuracy of DLP printers. However, undesired dropping of unfinished ceramic parts during printing, owing to inadequate adhesion between the first cured layer and the substrate of the building platform, still remains a challenge. In this study, the relationship between the adhesion properties of ultraviolet (UV)-curable alumina (α-Al2O3) suspensions and the functionalities and structures of UV-curable acrylate monomers was investigated. With an increase in the proportions of monofunctional monomers, the adhesion abilities of UV-curable alumina suspensions enhanced because of reduced volume shrinkage, however, inferior curing performances were observed due to a decrease in the double bond densities. Furthermore, the large-volume branched chain structures in monofunctional monomers and ethyoxyl groups in polyfunctional monomers effectively decreased the volume contraction, improving the adhesion performances of UV-curable alumina suspensions and facilitating the conversion of double bonds to provide excellent curing properties, further guaranteeing strong adhesion of these suspensions to the substrate.  相似文献   
8.
Adhesion forces between a tipless cantilever and an Au film were determined to investigate the influence of lateral velocity by recording force curves with an atomic force microscope at 20%–90% relative humidities. The sample was moved laterally, forth and back, with a frequency of 0.001–100 Hz and scan distances of 0.8, 8, and 80 μm to achieve a velocity ranging over 7 orders of magnitude. Experimental results show that at low lateral velocities (between 1.6 nm/s and 1–10 μm/s), the adhesion force either increases or decreases or remains stable with the lateral velocity without a certain characteristic trend. However, after a critical velocity, the adhesion force decreases logarithmically with the lateral velocity (between 1–10 and 16,000 μm/s). The decreasing magnitude can be as large as 97.3% of the maximum adhesion force. This decrease is well-explained by the contact time dependence of water bridges formed by capillary condensation.  相似文献   
9.
《Ceramics International》2022,48(12):16649-16655
Effective adhesion between AlOx and SiOx is important for protective coatings and high-k films under extreme operating conditions. Here, we study the chemo-mechanical behavior of the AlOx/SiOx interface and its delamination mechanism using all-atom reactive molecular dynamics simulations. The structure of the interface is examined by the formation of bridge oxygen and the distribution of nanopores. The cleavage of ionic bonds during delamination and the resulting adhesion strength of the system are quantified using pull-out simulations. The results reveal the dependence of the nanopores and ionic bond formation on the oxide structure. The ionic bond density at the interface increases as the oxidation of the aluminum surface proceeds, which directly increases the adhesion strength with SiOx. In particular, the global coordination distribution in the homogeneously grown oxide inhibits the formation of nanopores inside the aluminum substrate and contributes to extremely high adhesion strength. This reveals a fundamental relationship between physicochemical parameters and engineering mechanics for hetero-oxide structure design.  相似文献   
10.
This paper presents a literature survey on the theoretical backgrounds and the past research efforts in relation to the interactions between certain thermoplastics and epoxies, and their applications in polymer blending, epoxy toughening and composite joining. The main objectives are to understand the possible mechanisms of interfacial adhesion between thermoplastic and thermoset polymers, and also to explore the feasible approaches to improve interfacial adhesion for the purposes of joining fibre reinforced polymer (FRP) composite structures by fusion bonding. Further, it is expected that the review would provide some visions to the potential applications of the thermoplastic–thermoset interfacial interactions for the quick assembly of composite structures in cost-effective manufacturing of composite structures, through the uses of the technologies, such as thermoset composite fusion bonding, welding of thermoplastic composites with thermoset composites, and thermoplastic article attachment on thermoset composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号