首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2192篇
  免费   108篇
  国内免费   98篇
电工技术   40篇
综合类   181篇
化学工业   149篇
金属工艺   242篇
机械仪表   590篇
建筑科学   310篇
矿业工程   145篇
能源动力   128篇
轻工业   33篇
水利工程   25篇
石油天然气   18篇
武器工业   17篇
无线电   110篇
一般工业技术   220篇
冶金工业   64篇
原子能技术   5篇
自动化技术   121篇
  2024年   2篇
  2023年   36篇
  2022年   49篇
  2021年   61篇
  2020年   66篇
  2019年   62篇
  2018年   69篇
  2017年   70篇
  2016年   57篇
  2015年   62篇
  2014年   120篇
  2013年   143篇
  2012年   137篇
  2011年   165篇
  2010年   120篇
  2009年   128篇
  2008年   116篇
  2007年   138篇
  2006年   131篇
  2005年   90篇
  2004年   86篇
  2003年   83篇
  2002年   76篇
  2001年   64篇
  2000年   47篇
  1999年   54篇
  1998年   50篇
  1997年   32篇
  1996年   25篇
  1995年   17篇
  1994年   7篇
  1993年   12篇
  1992年   9篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
排序方式: 共有2398条查询结果,搜索用时 15 毫秒
1.
This paper focuses on the configuration design of flexure hinges with a prescribed compliance matrix and preset rotational center position. A new method for the topology optimization of flexure hinges is proposed based on the adaptive spring model and stress constraint. The hinge optimization model is formulated by maximizing the bending displacement with a spring while optimizing the compliance matrix to a prescribed value. To avoid numerical instability, an artificial spring is used as an auxiliary calculation, and a new strategy is developed for adaptively adjusting the spring stiffness according to the prescribed compliance matrix. The maximum stress of flexure hinge is limited by using a normalized P-norm of the effective von Mises stress, and a position constraint of rotational center is proposed to predetermine the position of the rotational center. In addition, to reduce the error of the stress measurement, a simple but effective filtering method is presented to obtain a complete black-and-white design. Numerical examples are used to verify the proposed method. Topology results show that the obtained flexure hinges have the prescribed compliance matrix and preset rotational center position while also meeting the stress requirements.  相似文献   
2.
针对某型车门下沉问题,通过台架试验获得车门、铰链和车身等各单因素下沉量和车门绞链系统整体下沉量,对单因素下沉量与系统整体下沉刚度进行线性拟合分析,得到车门铰链系统各单因素与系统下沉刚度的相关度排序.对前、后车门分别选取相关度较高的单因素进行优化,最终改进方案的仿真和试验结果证明该方案可有效地提升车门下沉刚度.采用定量分析法可快速找出影响下沉刚度的敏感因素,并能够快速生成优化方案,为新车型设计提供参考.  相似文献   
3.
4.
《Ceramics International》2021,47(23):32610-32618
AA7075 + 6%B4C+3%ZrC nano hybrid composite was successfully fabricated, with nano reinforcements composition in AA7075 alloy selected based on previous investigation, to achieve better mechanical performance. Two different sintering techniques, namely conventional and microwave, were implemented to determine the effect on microstructural and mechanical properties. Microstructural investigation was performed with the help of W-SEM. Tensile, compression, and hardness were measured with the help of UTM and Vickers microhardness machine. Porosity was calculated by using Archimedes principle. It was observed that the added nano ZrC particles formed agglomerates and the B4C particles were distributed homogenously. Composites processed by microwave sintering showed excellent mechanical properties compared to the conventionally sintered composites. No intermetallic compounds were detected in microwave sintered composites through XRD analysis, indicating strong and clean interface bonds between matrix and reinforcement particles. High strain to fracture value of 12.24% was noted in microwave sintered nano hybrid composite, while it was 6.12% for conventional sintered one. Fractography revealed no peeling action of reinforcements from the matrix material, and the mode of failure was brittle. It was concluded that, while fabricating nano range hybrid composites, the implementation of advanced sintering technique (microwave sintering) with low sintering temperatures and low sintering times with internal heat generations, helps in eliminating defects that may develop because of high surface energies of nano range reinforcements.  相似文献   
5.
In the present investigation, systematic grinding experiments were conducted in a laboratory ball mill to determine the breakage properties of low-grade PGE bearing chromite ore. The population balance modeling technique was used to study the breakage parameters such as primary breakage distribution (Bi, j) and the specific rates of breakage (Si). The breakage and selection function values were determined for six feed sizes. The results stated that the breakage follows the first-order grinding kinetics for all the feed sizes. It was observed that the coarser feed sizes exhibit higher selection function values than the finer feed size. Further, an artificial neural network was used to predict breakage characteristics of low-grade PGE bearing chromite ore. The predicted results obtained from the neural network modeling were close to the experimental results with a correlation of determination R2 = 0.99 for both product size and selection function.  相似文献   
6.
In the past, glass fiber-reinforced polymer (GFRP)-reinforcement has been successfully applied in reinforced concrete (RC) structures where corrosion resistance, electromagnetic neutrality, or cuttability were required. Previous investigations suggest that the application of GFRP in RC structures could be advantageous in areas with seismic activity due to their high deformability and strength. However, especially the low modulus of elasticity of GFRP limited its wide application as GFRP-reinforced members usually exhibit considerably larger deformations under service loads than comparable steel-reinforced elements. To overcome the aforementioned issues, the combination of steel and GFRP reinforcement in hybrid RC sections has been investigated in the past. Based on this idea, this paper presents a novel concept for the predetermination of potential plastic hinges in RC frames using GFRP reinforcement. To analyze the efficiency of the concept, nonlinear finite element simulations were performed. The results underscore the high efficiency of hybrid steel-GFRP RC sections for predetermining potential plastic hinges on RC frames. The results also indicate that the overall seismic behavior of RC structures could be improved by means of GFRP as both the column base shear force during the seismic activity as well as the plastic deformations after the earthquake were considerably less pronounced than in the steel-reinforced reference structure.  相似文献   
7.
Effect of chemical composition of Mg-xCu based alloys (x = 9.94–58.00 wt %) modified by KCl upon their hydrogen storage performance was studied. Kinetic curves and pressure-concentration isotherms were measured in the ranges up to 60 bar and 388 °C, respectively. It was observed that desorption rate dc/dt is not significantly influenced by the composition. Unknown Cu-rich phase was detected that has shown a catalytic effect on desorption from a mixture with other phases. Activation energy of hydrogen desorption decreased with increasing x from 180 kJ/mol down to 98 kJ/mol. Average hydride dissociation enthalpy, ΔH, for the lowest plateau was 75 kJ/mol which is equal to literature value for pure Mg. Slightly lover average value, 67 kJ/mol was obtained for the second plateau and ΔH for the third one decreased from 70 kJ/mol for the lowest to 49 kJ/mol for the highest x.  相似文献   
8.
Type 316LN stainless steel (SS) is the principal structural material for the components of sodium cooled fast reactors operating under elevated temperature conditions. In order to assess the degradation in strength of service exposed components using a small specimen testing technique such as automated ball indentation (ABI), it is necessary to carry out prior detailed ABI studies on the virgin material. In this investigation, the tensile behaviour of as-received 316LN SS were investigated at several temperatures in the range 298–973 K using ABI technique. The load-depth of indentation data measured from ABI tests was analyzed using semi-empirical relationships to obtain the tensile properties. The yield stress and the flow curves were determined by correlating ABI results with corresponding uniaxial tensile test results. Trend curve for tensile strength with temperature, as estimated from ABI tests, exhibited a plateau region in the temperature around 823 K, similar to uniaxial tensile tests. The variations of strength coefficient, strain hardening exponent, yield ratio, hardness and uniform ductility with temperature were evaluated from ABI tests. The ABI technique was found to estimate the influence of temperature on tensile properties sensitively.  相似文献   
9.
Although topology optimization is established for linear static problems, more effort is required for solving nonlinear plastic problems. A new topology optimization approach with equivalent static loads (ESLs) is suggested to find the optimum topologies and locations of plastic hinges of thin-walled crash boxes by considering crash-induced deformation, the main crash energy-absorbing mechanism. Together with finite element method crashworthiness analyses, considering all nonlinearities with rate-dependent plasticity, the method was developed using an appropriate time-incremental scheme of ESLs without removing any high values of loads. Analyses show that the crash boxes with optimum topologies have energy-absorbing capabilities equivalent to the original structure. The proposed method is evaluated for two crashes: a crash box at low speed and a double cell subjected to high-speed collision. The results indicate that this method captures nonlinear crushing behaviours and accurate locations of plastic hinges where, if proper reinforcements are made, energy absorption can be enhanced.  相似文献   
10.
In this study, we propose a method to produce nanocrystalline TiFe powder by high-energy ball milling, in order to avoid the common sticking problem of the material to the milling tools, assuring a material prompt to absorb hydrogen as well. The method consists of making a preliminary milling operation with the elemental powders (50:50 stoichiometric ratio) to form a strong adhered layer of the milled material on the surfaces of the vial and balls. The main milling operation is then performed with a new powder charge (same composition as before), but now adding a process control agent (stearic acid). Various processing times - 2, 6, 10 and 20 h - were used in the milling experiments. Nanocrystalline TiFe was synthesized in this way with low oxygen contamination, full yields for milling times of 6 h or over, requiring no heat treatments for the first hydrogen absorption. Hydrogen storage capacity of 1.0 wt% at room temperature under 20 bar was attained by the sample milled for 6 h. Kinetic data from samples milled for 2 h and 6 h agreed with Jander model for the rate limiting step of the hydriding reaction, which is based on diffusion with constant interface area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号