首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2111篇
  免费   215篇
  国内免费   92篇
电工技术   166篇
综合类   132篇
化学工业   520篇
金属工艺   61篇
机械仪表   44篇
建筑科学   3篇
矿业工程   22篇
能源动力   346篇
轻工业   22篇
水利工程   3篇
石油天然气   56篇
武器工业   31篇
无线电   432篇
一般工业技术   234篇
冶金工业   11篇
原子能技术   11篇
自动化技术   324篇
  2024年   3篇
  2023年   90篇
  2022年   102篇
  2021年   126篇
  2020年   132篇
  2019年   118篇
  2018年   87篇
  2017年   108篇
  2016年   86篇
  2015年   93篇
  2014年   128篇
  2013年   149篇
  2012年   154篇
  2011年   152篇
  2010年   121篇
  2009年   135篇
  2008年   102篇
  2007年   101篇
  2006年   82篇
  2005年   82篇
  2004年   75篇
  2003年   44篇
  2002年   35篇
  2001年   26篇
  2000年   23篇
  1999年   16篇
  1998年   13篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1951年   1篇
排序方式: 共有2418条查询结果,搜索用时 187 毫秒
1.
Li4SiO4 crystal is a candidate material for tritium breeder material. Vacancy defects and He atoms will be produced in the crystal after neutron irradiation in fusion reactor. In previous research, we learned vacancy defects mainly include VO0, VO2+, and VLi0, meanwhile, He atoms are easy to migrate and aggregate in the crystal. In order to understand the relationship between vacancy defects and He atoms, we use density functional theory (DFT) to study the interaction mechanism between vacancy and He atom. The results show that the local stable sites of He atoms are related to the surrounding charge distribution. VO2+ and VLi0 can capture interstitial He atoms, and it is difficult to escape the vacancies, thereby increasing the nucleation center of He atoms. VO0 promotes the diffusion of He atoms in the interstitial space, which will cause small helium bubbles to merge more easily.  相似文献   
2.
The widespread demand for clean energy stimulates great interest to hydrogen energy with high energy density and conversion efficiency. Separation technologies by membranes are increasingly applied for hydrogen separation because of its excellent performance and low consumption. In this work, density functional theory simulations is used to study hydrogen separation of Pd–Au–Ag membrane, and the performance of Pd–Au alloy is also compared and discussed. The results indicate that Pd–Au alloy shows superior selectivity to H2 gas over CO, N2, CH4, CO2 and H2S gases, which is in line with experimental results. In particular, the separation selectivity of Pd–Au–Ag to H2 is significantly greater than those for Pd–Au alloy and several currently reported materials. Moreover, the permeability of H2 in Pd–Au–Ag exceeds the limits for industrial production at deferent temperatures. Our calculations demonstrate that Pd–Au–Ag alloy present excellent performance as a promising membrane for hydrogen separation.  相似文献   
3.
Fe(III) ion can strongly inhibit the sulphidation amine flotation of smithsonite. However, its modification mechanism on smithsonite surface is still obscure. In this work, a systematic study of the modification of Fe(III) ion on smithsonite (1 0 1) surface was performed using DFT calculation. The optimal number of H2O ligands for Fe(III) ion hydrates in aqueous conditions was probed, and [Fe(OH)2(H2O)4]+ and [Fe(OH)4]? were identified as the major modification species, then their adsorption and bonding mechanisms were further revealed by analyzing the frontier orbitals, density of state, Mulliken population, and electron density. The calculated adsorption structures were consistent with the former experiment, and we found the O site that bonded to the C atom on smithsonite surface was the most favorable position for [Fe(OH)2(H2O)4]+ and [Fe(OH)4]? adsorptions. Besides, their adsorption mechanisms on smithsonite surface were principally due to the combined effect of FeO bond and hydrogen bonding. Simultaneously, hydrogen bonding greatly enhanced the stability of the adsorption structures. Moreover, the dominant orbital contribution for the bonding of FeO was primarily due to the orbital hybridization between Fe 3d and O 2p orbitals. This work can help in deeper understanding of the depression of Fe(III) ion on the sulphidation amine flotation of smithsonite.  相似文献   
4.
Formic acid (HCOOH, FA), a common liquid hydrogen storage material, has attracted tremendous research interest. However, the development of efficient, low-cost and high-stable heterogeneous catalyst for selective dehydrogenation of FA remains a major challenge. In this paper, a simple co-reduction method is proposed to synthesize nitrogen-phosphorus co-functionalized rGO (NPG) supported ultrafine NiCoPd-CeOx nanoparticles (NPs) with a mean size of 1.2 nm. Remarkably, the as-prepared Ni0.2Co0.2Pd0.6-CeOx/NPG shows outstanding catalytic activity for FA dehydrogenation, affording a high TOF value of 6506.8 mol H2 mol Pd?1 h?1 at 303 K and a low activation energy of 17.7 kJ mol?1, which is better than most of the reported heterogeneous catalysts, and can be ascribed to the combined effect of well-dispersed ultrafine NiCoPd-CeOx NPs, modified Pd electronic structure, and abundant active sites. The reaction mechanism of dehydrogenation of FA is also discussed. Furthermore, the optimized Ni0.2Co0.2Pd0.6-CeOx/NPG shows excellent stability over 10th run with 100% conversion and 100% H2 selectivity, which may provide more possibilities for practical application of FA system on fuel cells.  相似文献   
5.
The construction of heterostructure is an effective strategy to synergetically couple wide-band-gap with the narrow-band-gap semiconductor with a mediate optical property and charge transfer capability. Herein, the Z-Scheme CdS/ZnSnO3 (CdS/ZSO) heterostructures were constructed by anchoring CdS nanoparticles on the surface of double-shell hollow cubic ZnSnO3 via the hydrothermal method. The direct recombination of excited electrons in the conduction band (CB) of ZSO and holes in the valence band (VB) of CdS via d-p conjugation at the interface greatly accelerated the internal electric field (IEF). The transfer mode follows the Z-Scheme mechanism, where CdS/ZSO synergistically facilitates the efficient charges transfer from CdS to ZnSnO3 through the intimate interface. Here, ZnSnO3 and CdS serve as an oxidation photocatalyst (OP) and reduction photocatalyst (RP), respectively. Thus, it can promote synergistically the oxidation half-reaction and reduction half-reaction of H2 evolution. The density-functional theory (DFT) calculation further confirms the charges transfer from CdS to ZnSnO3. The hydrogen evolution of 5% CdS/ZSO heterostructure reached 1167.3 μmol g?1, which was about 8 and 3 folds high compared to pristine ZSO (141.9 μmol g?1) and CdS (315.5 μmol g?1), during 3 h of reaction respectively. Furthermore, the CdS/ZSO heterostructures could suppress the photo corrosion of CdS, resulting in its high stability. This work is expected to enlighten the rational design of heterostructure for OP and RP to promote the hybrid heterostructures photocatalytic H2 evolution.  相似文献   
6.
Photocatalytic water splitting has become a promising technology to solve environmental pollution and energy shortage. Exploring stable and efficient photocatalysts are highly desired. Herein, we propose novel low-dimensional InSbS3 semiconductors with good stability based on density functional theory. Such InSbS3 structures could be obtained from their bulk crystal by suitable exfoliation methods. Our calculations indicate that two-dimensional (2D) and one-dimensional (1D) InSbS3 nanostructures have moderate band gaps (2.54 and 1.97 eV, respectively) and suitable band edge alignments, which represents sufficient redox capacity for photocatalytic water splitting. 2D InSbS3 monolayer possesses oxygen evolution reaction (OER) activity and 1D InSbS3 single-nanochain possesses hydrogen evolution reaction (HER) activity under acidic conditions. Interestingly, two edge electron states can be introduced when the dimension of InSbS3 is reduced from 2D to 1D and the new electron states can exist in arbitrary-width nanoribbons, which can effectively promote the process of HER. Moreover, InSbS3 monolayer and single-nanochain also exhibit large solar-to-hydrogen efficiency, high carrier mobility, and excellent optical absorption properties, which can facilitate the process of photocatalytic reactions. Our findings can stimulate the synthesis and applications of low-dimensional InSbS3 semiconductors for overall water splitting.  相似文献   
7.
We report the study of conductive polyaniline (PANI) chain embedded Ti-MOF functionalized with CoS as a cocatalyst for hydrogen evolution reaction (HER) application. The post synthetically modified hybrid photocatalyst PANI/Ti-MOF/CoS greatly influences the redox and e? ? h+ separation process and exhibits an impressive rate of HER (~1322 μmol h?1g?1), suppressing the pristine Ti-MOF (~62 μmol h?1g?1) with apparent quantum yield (AQY) of ~3.2 and transient current response of ~46.4 μA cm?2. In this system, Ti-MOF provides the circulation of Ti3+ and Ti4+ to the reaction of photocatalytic H2 generation, where the additional PANI and CoS amended the performance of H2 production through electron enrichment and thereby improving the stability and integrity of Ti-MOF. The Electrochemical studies demonstrated increased photocurrent by interweaving Ti-MOF crystal with PANI through cation-π interaction thereby enhancing interface connection and then promoting electron transfers. The charge dynamics revealed the initial charge transfer from photoexcited PANI to encapsulated MOF framework to boost the photocatalytic performance of the system. Further, the electron movement at the Ti-MOF/CoS interface is investigated through work function and electrochemical potential of electrons (Fermi level). DFT results demonstrate the importance of CoS in improving the photocatalytic performance of hybrid Ti-MOF catalyst, which leads to superior catalytic behaviour. These results establish that the encapsulation of catalytic active sites inside MOFs with desirable energy band gaps would be an ideal choice for the production of solar fuels.  相似文献   
8.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
9.
Plumbene, a recently discovered 2D material, has been examined for hydrogen storage. First principles calculations have been performed to investigate the hydrogen adsorption on pristine plumbene monolayer. The hydrogen molecule prefers to adsorb on three adsorption sites, i.e. H (hollow-site), T (top-site) and B (bond-site), of plumbene surface with desired adsorption energy. The adsorption energy is highest (−149 meV) at hollow site and lowest (−104 meV) at bond site. One side hydrogen decorated plumbene exhibit 3.37 wt% Hydrogen Gravimetric Density (HGD). Whereas 6.74 wt% (HGD), with the average adsorption energy of −117 meV/H2, has been achieved in both side hydrogen decorated plumbene monolayer. Applied electric field can effectively controls the adsorption and desorption processes. Positive electric field makes the adsorption strong while the negative electric field results in weakening of hydrogen adsorption. It means electric field act as a switch to store and release hydrogen with good control and usage selectivity. Present study reveals that the plumbene is a strong candidate for hydrogen storage to meet the desired target of HGD suggested by U.S. Department of Energy by the year 2021.  相似文献   
10.
Two-dimensional (2D) B2O monolayer is considered as a potential hydrogen storage material owing to its lower mass density and high surface-to-volume ratio. The binding between H2 molecules and B2O monolayer proceeds through physisorption and the interaction is very weak, it is important to improve it through appropriate materials design. In this work, based on density functional theory (DFT) calculations, we have investigated the hydrogen storage properties of Lithium (Li) functionalized B2O monolayer. The B2O monolayer decorated by Li atoms can effectively improve the hydrogen storage capacity. It is found that each Li atom on B2O monolayer can adsorb up to four H2 molecules with a desirable average adsorption energy (Eave) of 0.18 eV/H2. In the case of fully loaded, forming B32O16Li9H72 compound, the hydrogen storage density is up to 9.8 wt%. Additionally, ab initio molecular dynamics (AIMD) calculations results show that Li-decorated B2O monolayer has good reversible adsorption performance for H2 molecules. Furthermore, the Bader charge and density of states (DOS) analysis demonstrate H2 molecules are physically absorbed on the Li atoms via the electrostatic interactions. This study suggests that Li-decorated B2O monolayer can be a promising hydrogen storage material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号