首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2051篇
  免费   81篇
  国内免费   254篇
电工技术   42篇
综合类   30篇
化学工业   583篇
金属工艺   1311篇
机械仪表   6篇
建筑科学   12篇
矿业工程   4篇
能源动力   144篇
轻工业   1篇
水利工程   2篇
石油天然气   25篇
无线电   15篇
一般工业技术   140篇
冶金工业   22篇
原子能技术   1篇
自动化技术   48篇
  2024年   2篇
  2023年   8篇
  2022年   24篇
  2021年   31篇
  2020年   33篇
  2019年   56篇
  2018年   56篇
  2017年   52篇
  2016年   44篇
  2015年   63篇
  2014年   130篇
  2013年   164篇
  2012年   103篇
  2011年   289篇
  2010年   219篇
  2009年   250篇
  2008年   176篇
  2007年   185篇
  2006年   129篇
  2005年   90篇
  2004年   84篇
  2003年   61篇
  2002年   56篇
  2001年   18篇
  2000年   24篇
  1999年   7篇
  1998年   14篇
  1997年   8篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1983年   1篇
排序方式: 共有2386条查询结果,搜索用时 15 毫秒
1.
Plasma electrolytic oxidation (PEO) coatings were produced on AZ80 magnesium alloy in a solution containing silicates and phosphates and working at high current densities with short treatment times. The effect of a sealing treatment in boiling water on corrosion and mechanical properties of the coatings were investigated. Moreover, the corrosion mechanism of the samples with and without the sealing treatment was evaluated. The microstructure of the coatings was characterized with scanning electron microscope observation and X‐ray diffraction analysis. The mechanical properties were evaluated with nanoindentation tests and the corrosion resistance was studied by potentiodynamic polarization, electrochemical impedance spectroscopy, and scanning vibrating electrode technique. The results showed that the sealing did not influence the microstructure and the mechanical properties of the samples and instead produced a remarkable increase in the corrosion resistance. The crevice corrosion, present in the sample without the sealing, was avoided with the treatment in boiling water.  相似文献   
2.
《Ceramics International》2022,48(15):21451-21458
During the deposition of a-C:H film, defects (pinholes or discontinuities) caused by excessive stress will inevitably appear, which will reduce the corrosion resistance of the a-C:H film. In this study, top a-C:H:Si:O layers (thickness of approximately 0.3 μm) on the surface of a-C:H films were deposited on a large scale by PACVD technology using acetylene (C2H2) and/or hexamethyldisiloxane (HMDSO) as reactants, to improve the corrosion resistance of a-C:H films while ensuring the appropriate overall hardness of the films. The corrosion behaviors of the films were studied by electrochemical impedance spectroscopy (EIS) and Tafel polarization. We found that the a-C:H/a-C:H:Si:O films possess a lower electrolyte penetration rate due to their stronger capacitance characteristics. In addition, the corrosion current density of the a-C:H/a-C:H:Si:O films (10?10 A cm?2) were reduced by 2 orders of magnitude compared to the a-C:H film (10?8 A cm?2), and by 3 orders of magnitude compared to 316 stainless steel (10?7 A cm?2). The impedance results obtained by EIS were simulated using appropriate equivalent circuits, and the corresponding electrical parameters were used to further verify the electrochemical protection behavior of the top a-C:H:Si:O layer.  相似文献   
3.
Hydrogen is regarded as a clean and highly efficient renewable energy. The platinum catalytic electrode is widely used in hydrogen evolution reaction (HER), but it has affected its commercial application because of its high cost. Therefore, the study on cost-effective and high-active catalysts toward HER is required to realise large-scale hydrogen production. In this work, we present a novel Pt/NPSSF catalyst prepared by a one-step in-situ deposition of Pt precursor on a nano-porous stainless-steel film (NPSSF) substrate. The prepared catalyst was evaluated in acidic and alkaline conditions for its HER activities. The preliminary results demonstrate that the Pt/NPSSF electrodes have superior catalytic activity for HER. The hydrogen overpotential of Pt/NPSSF is ?70mV (RHE) in the alkaline solution, which is lower than the Pt electrode of ?184mV. At the same time, we also obtained ?71.2 mV of overpotential for the Pt/NPSSF electrode, which is similar to the ?73mV of Pt electrode in the acid solution. The Tafel graphs plotted from the LSV curves indicate the different HER mechanism in the alkaline and acid solution. The HER kinetics of the Pt/NPSSF were studied using EIS. Comparing Pt/NPSSF to Pt electrode, the multi-pore structures of NPSSF and the Pt nanoparticles active sites decrease the charge transfer-resistance for the HER process. The facile preparation, high efficiency and low value of the Pt/NPSSF composite electrodes demonstrate the promising applications in HER.  相似文献   
4.
The synergistic effect of bark resin of Schinus molle (BRSM) and iodide ions in 0.5 M sulfuric acid has been studied for the first time by potentiodynamic polarization and electrochemical impedance spectroscopy measurements; also, the surface morphology has been analyzed by scanning electron microscopy–energy-dispersive X-ray spectroscopic analysis in the present work. The results show that the BRSM and iodide ions have an evident synergistic inhibition effect in a 0.5-M sulfuric acid solution. The adsorption of the BRSM/iodide ion system follows the Langmuir adsorption isotherm and acts as a mixed-type inhibitor in sulfuric acid. The BRSM/iodide ion system is an effective inhibitor for API5L X70 pipeline steel in the 0.5-M sulfuric acid solution. The maximum percentage inhibition efficiency is equal to 99% at 1 g/L BRSM + 2 mM KI.  相似文献   
5.
This study studied corrosion in 0.1 M Na2SO4, 0.1 M NaCl, and 0.6 M NaCl, all saturated with Mg(OH)2, using weight loss, hydrogen evolution, and electrochemical measurements. Corrosion was similar in all cases. Nevertheless, the corrosion rates were alloy-dependent, were somewhat lower in 0.1 M Na2SO4 than in 0.1 M NaCl, and increased with NaCl concentration. The corrosion damage morphology was similar for all solutions; the extent correlated with the corrosion rate. The corrosion rates evaluated by the electrochemical methods were lower than those evaluated from hydrogen evolution, consistent with the Mg corrosion mechanism involving the unipositive Mg+ ion.  相似文献   
6.
The paper analyses the corrosion behaviour of naturally and artificially aged AA2024 alloy in NaCl solution and in the presence of an environment-friendly corrosion inhibitor, CeCl3. On the basis of the values of polarisation resistance and corrosion current density, the corrosion resistance of the protective inhibitor film is established as well as the general corrosion resistance of this aluminium alloy. Resistance to pit formation is determined based on the difference in pitting and corrosion potentials while resistance to pit growth is determined based on the amount of charge consumed during pit growth. A scanning electron microscope is used to examine the morphology of the pits formed during the pitting corrosion testing, as well as to determine the cerium content on intermetallic particles and the matrix AA2024 alloy. The corrosion behaviour of AA2024 alloy is investigated after different test periods in NaCl solution and in the same solution with the CeCl3 inhibitor. The corrosion resistance of both tempers of AA2024 alloy is more than one order of magnitude higher in the presence of CeCl3. An explanation of the observed differences in the corrosion behaviour of the naturally and artificially aged AA2024 alloy is proposed. Different corrosion behaviour of the alloy after different test periods is also explained.  相似文献   
7.
8.
9.
Ce-based conversion coatings (CeCCs) are a promising alternative to toxic chromate coatings on the metal substrates. In this work the CeCCs were electrodeposited on aluminium alloy AA6060 from aqueous solution of Ce(NO3)3 at different potentials (−0.95 V, −1.2 V and −1.4 V). Effect of deposition potential and post-treatment in the phosphate solution on morphology and protective properties of CeCCs with top cataphoretic epoxy coating was studied. To assess the differences between the protective systems, originating from the different CeCCs pre-treatments, electrochemical impedance spectroscopy (EIS), polarization measurements, AFM and SEM/EDS analysis were used. The EIS study was undertaken to follow the evolution of corrosion behaviour of epoxy coating/CeCCs protective systems over prolonged time of exposure to the chloride environment (3 wt.% NaCl). Results suggest significantly improved corrosion stability of epoxy coating on AA6060 with as-deposited CeCCs sub-layers with respect to the same epoxy coatings with phosphate post-treated CeCCs. The far best protective properties, i.e., the greatest value of pore resistance and the lowest value of corrosion current density were provided by the epoxy coating/CeCC protective system with CeCC deposited at −1.2 V and without post-treatment.  相似文献   
10.
This work aims at studying by electrochemical impedance spectroscopy (EIS) the susceptibility to filiform corrosion of low carbon steel covered by cataphoretic coating. The determination of the exposed metallic area variations of scratched samples during ageing test is an estimation of the disbonding of the coating and/or the filiform corrosion. This area can be evaluated by electrochemical impedance spectroscopy (EIS). A simplified electrical equivalent model used to estimate the exposed metallic area is valid if the corrosion products are correctly dissolved before characterization. Furthermore the steel is a very complex substrate and thus many parameters must be optimized in order to remove the corrosion products before EIS measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号