首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2344篇
  免费   185篇
  国内免费   88篇
电工技术   89篇
综合类   103篇
化学工业   1286篇
金属工艺   123篇
机械仪表   49篇
建筑科学   18篇
矿业工程   27篇
能源动力   51篇
轻工业   29篇
石油天然气   53篇
武器工业   9篇
无线电   207篇
一般工业技术   406篇
冶金工业   108篇
原子能技术   23篇
自动化技术   36篇
  2023年   41篇
  2022年   64篇
  2021年   63篇
  2020年   57篇
  2019年   47篇
  2018年   69篇
  2017年   67篇
  2016年   65篇
  2015年   61篇
  2014年   67篇
  2013年   108篇
  2012年   127篇
  2011年   135篇
  2010年   77篇
  2009年   111篇
  2008年   98篇
  2007年   150篇
  2006年   125篇
  2005年   132篇
  2004年   146篇
  2003年   126篇
  2002年   107篇
  2001年   95篇
  2000年   97篇
  1999年   50篇
  1998年   44篇
  1997年   29篇
  1996年   31篇
  1995年   22篇
  1994年   24篇
  1993年   8篇
  1992年   30篇
  1991年   27篇
  1990年   43篇
  1989年   54篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1981年   2篇
排序方式: 共有2617条查询结果,搜索用时 31 毫秒
1.
The Ag-Pd internal electrode of multilayer piezoelectric ceramics needs to be sintered below 1000°C, and lead wires and components need to be welded with lead-free solder at 260°C. PNN–PMW–PZT–xSr piezoelectric ceramics with high Curie temperature (Tc > 260°C) were synthesized at a low sintering temperature (960°C) to meet the requirements of multilayer piezoelectric devices. The relationship between structures (phase, domain, and microstructures) and electrical properties (piezo/ferroelectric properties, and dielectric relaxation) in the Sr2+ substituted ceramics was investigated. Rietveld refinement and Raman spectra show that Sr2+ substitution can cause the phase change and increase the force constant of [BO6] octahedron. The piezoelectric response increases with increasing the content of the tetragonal phase (CTP) in the rhombohedral-tetragonal (R-T) coexisted ceramics. The ceramics with 0.6 mol% Sr2+ substitution have minimum activation energy for domain wall movement (Ea) of 0.0362 eV which favors the formation of nanometer-sized domains, and possess excellent electrical properties (d33 = 623 pC/N, d33* =783 pm/V, Tc =295°C). The higher the CTP, the lower the Ea. The lower Ea favors the rotation of polarization direction and extension, and is beneficial to the generation of the nanometer-size domains, resulting in high piezoelectric properties.  相似文献   
2.
The aim of this study was to develop high dielectric constant flexible polymers with a highly efficient and cost‐effective approach using acrylonitrile butadiene rubber (NBR) as the polymer matrix and barium titanate (BT) as the high dielectric constant filler. The BT powder was synthesized with a solid‐state reaction and was characterized using a particle size analyzer, XRD, SEM and Fourier transform infrared spectroscopy. NBR/BT composites were fabricated using an internal mixer with various BT loadings up to 160 phr. The influence of BT loading on the cure characteristics and mechanical, dynamic mechanical, thermal, dielectric and morphological properties was determined. The incorporation of BT in the NBR matrix shortened scorch time and increased delta torque. The mechanical properties, thermal stability and dielectric constant were greatly improved and increased with BT loading. The results suggest that the reinforcement effect was achieved due to strong hydrogen bonding or polar–polar interactions between NBR matrix and BT filler. This is further corroborated by the good dispersion of BT filler in the NBR matrix observed with SEM imaging. These findings can be applied to produce high‐performance dielectric elastomers. © 2020 Society of Industrial Chemistry  相似文献   
3.
Heat transfer within ceramic feedstock powders is still unclear, which impedes optimization of the thermal and mechanical properties of the thermal sprayed coatings. The microspheres (yttria-stabilized zirconia YSZ and lanthanum zirconate LZO) were prepared via the electro-spraying assisted phase inversion method (ESP). The thermal properties of the two ESP microspheres and a commercial hollow spherical powder (HOSP) were investigated by using theoretical, experimental, and simulation methods. Thermal conductivity of the single microsphere was estimated via a novel nest model that was derived from the Maxwell-Eucken 1 and the EMT model. Thermal conductivity of a single YSZ/LZO-ESP microsphere prepared at 1100–1200 °C was within 0.36–0.75 W/m K, which was ~ 20 % lower than that of a single YSZ-HOSP microsphere with a similar porosity. Heat flux simulation showed that high tortuosity around the multi-scaled voids of the ESP microsphere led to a more efficient decrease in thermal conductivity compared with total porosity.  相似文献   
4.
《Ceramics International》2022,48(7):9330-9341
This study investigates the effects of densification on the deformation and fracture in fused silica under Vickers indentation by both the finite element analysis (FEA) and experimental tests. A refined elliptical constitutive model was used, which enables us to investigate the effects of the evolution of yield stress under pure shear and elastic properties with densification. The densification distribution was predicted and compared with experiments. The plastic deformation and indentation stress fields were used to analyze the initiation and morphology of various crack types. The formation mechanism of borderline cracks was revealed for the first time. This study reveals that the asymmetry of the densification distribution and elastic-plastic boundary significantly influences the cracking behavior. Under the Vickers indentation, conical cracks have the largest penetration depth. When these cracks emerge from a region far from the impression, they extend with constant radii to form circles on the sample surface. Otherwise, they tend to be initiated at the centers of the indenter-material contact edges before propagating towards the impression corners with increasing radii. Therefore, the borderline cracks consisting of successive partial conical cracks can form at a low load and makes them the first type of crack to appear.  相似文献   
5.
Gadolinium zirconate (GZ) is an attractive material for thermal barrier coatings (TBCs). However, a single layer GZ coating has poor thermal cycling life compared to Yttria Stabilized Zirconia (YSZ). In this study, Solution Precursor High Velocity Oxy-Fuel (SP-HVOF) thermal spray was used to produce a double layer GZ/YSZ TBC and compared the thermal cycling performance with the single layer YSZ TBC. The temperature behaviour of the solution precursor GZ was studied, and single splat tests were carried out to obtain an optimised spray parameter. In thermal cycling tests, the single-layer YSZ reached 20 % failure at 85 ± 5 cycles, whereas the double-layer GZ/YSZ was at 70 ± 15 cycles. The single-layer failed at the topcoat/TGO interface, whereas the double-layer failed at GZ/YSZ interface and topcoat/TGO interface. Moreover, Gd diffusion occurred near the GZ/YSZ interface, resulting in porosities in the GZ layer.  相似文献   
6.
《Ceramics International》2022,48(14):20158-20167
Vacuum induction melting is a potential process for the preparation of TiAl alloys with good homogeneity and low cost. But the crucial problem is a selection of high stability refractory. In this study, a BaZrO3/Y2O3 dual-phase refractory was prepared and its performance for melting TiAl alloys was studied and compared with that of a Y2O3 refractory. The results showed the dual-phase refractory consisted of BaZr1-xYxO3-δ and Y2O3(ZrO2), exhibited a thinner interaction layer (30 μm) than the Y2O3 refractory (90 μm) after melting the TiAl alloy. Although the TiAl alloys melted in the dual-phase and Y2O3 refractory exhibited similar oxygen contamination (<0.1 wt%), the alloy melted in the dual-phase refractory had smaller Y2O3 inclusion content and size than that in the Y2O3 refractory, indicating that the dual-phase refractory exhibited a better melting performance than the Y2O3 refractory. This study provides insights into the process of designing highly stable refractory for melting TiAl alloys.  相似文献   
7.
We developed Cold Isostatic Joining (CIJ) which is an environmental friendly room temperature joining method. This technique extends cold sintering process to joining of glasses. By optimizing the CIJ conditions a shear stress (18 MPa) comparable to bulk fused silica was achieved. The technique surpasses other joining methods (e.g. adhesive bonding and brazing), because it is insensitive to thermal degradation. Unlike pressure-less silicate bonding, pressure assisted CIJ resulted in a thin joining interlayer (≈27 nm) which maintained its integrity after being heated up to 1000 °C. The in-line transmittance (92%) was identical to un-joined material over the full spectrum making the joining nearly undetectable. The mechanism of CIJ formation and joining were clarified using X-ray diffraction (XRD and pole figure), scanning electron microscopy (SEM) and in line transmittance measurements. The cold joining method could find applications in the field of optics and semiconductors for wafer and lens bonding.  相似文献   
8.
An original oxide/oxide ceramic-matrix composite containing mullite-based fibers and a barium aluminosilicate matrix has been synthesized by the film boiling chemical vapour infiltration process. Alkoxides were used as liquid precursors for aluminum, silicon and barium oxides. The structure and microstructure of the oxide matrix were characterized by Scanning Electron Microscopy, Energy Dispersive Spectroscopy and X-ray diffraction. Apart from small residual mullite and amorphous phase amounts, the oxide matrix is composed of the hexacelsian phase, conferring to the material interesting perspectives for high-temperature electromagnetic and structural applications.  相似文献   
9.
Lanthanum zirconate is a promising thermal barrier coating material owing to its excellent thermophysical properties and La plays the key role in its corrosion resistance. Here, an amorphous precursor is used as raw feedstock material so as to synthesize lanthanum zirconate coatings with tailorable composition by atmospheric plasma spray (APS). Three lanthanum zirconate coatings of La1.7Zr2.3O7.15, La2.0Zr2.0O7.0 and La2.3Zr1.7O6.85 are fabricated. Furthermore, the corrosion resistance of the as-sprayed coatings against CaO-MgO-Al2O3-SiO2 at 1250℃ is investigated. The increased La content promotes the formation of a sealing layer of the crystalline Ca2La8(SiO4)6O2 apatite, which slows down the penetration of molten CaO-MgO-Al2O3-SiO2. Therefore, the infiltration rate of the La2.3Zr1.7O6.85 coating decreased up to 42.6 % compared with the other two coatings. This work develops a feasible preparation strategy to control the La composition for the improved corrosion resistance, which is expected to guide the future coating design and synthesis for the materials with big composition changes during the APS process.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号