首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18308篇
  免费   1186篇
  国内免费   660篇
电工技术   396篇
综合类   1085篇
化学工业   4405篇
金属工艺   2485篇
机械仪表   628篇
建筑科学   1160篇
矿业工程   680篇
能源动力   324篇
轻工业   2388篇
水利工程   122篇
石油天然气   213篇
武器工业   270篇
无线电   453篇
一般工业技术   2602篇
冶金工业   2768篇
原子能技术   85篇
自动化技术   90篇
  2024年   37篇
  2023年   318篇
  2022年   512篇
  2021年   590篇
  2020年   571篇
  2019年   432篇
  2018年   419篇
  2017年   503篇
  2016年   444篇
  2015年   485篇
  2014年   781篇
  2013年   853篇
  2012年   1068篇
  2011年   1205篇
  2010年   974篇
  2009年   912篇
  2008年   792篇
  2007年   1235篇
  2006年   1217篇
  2005年   1125篇
  2004年   942篇
  2003年   815篇
  2002年   720篇
  2001年   597篇
  2000年   513篇
  1999年   408篇
  1998年   375篇
  1997年   293篇
  1996年   236篇
  1995年   191篇
  1994年   193篇
  1993年   132篇
  1992年   94篇
  1991年   43篇
  1990年   37篇
  1989年   34篇
  1988年   14篇
  1987年   10篇
  1986年   4篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.  相似文献   
2.
The slight-alkalization of generator internal cooling water (GICW) is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator. CO2 inleakage is increasingly identified as a potential security risk for GICW system. In this paper, the influence of CO2 inleakage on the slight-alkalization of GICW was theoretically discussed. Based on the equilibriums of the CO2-NaOH-H2O system, CO2 inleakage saturation was derived to quantify the amount of the dissolved CO2 in GICW. This parameter can be directly calculated with the measured conductivity and the [Na+] of GICW. The influence of CO2 inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed. The more severe the inleakage, the narrower the water quality operation ranges of GICW, resulting in the more difficult the slight-alkalization conditioning of GICW. The temperature calibrations of the conductivity and the pH value of GICW show non-linear correlations with the amount of CO2 inleakage and the NaOH dosage. This study provides insights into the influence of CO2 inleakage on the slight-alkalization of GICW, which can serve as the theoretical basis for the actual slight-alkalization when CO2 inleakage occurs.  相似文献   
3.
Heat transfer within ceramic feedstock powders is still unclear, which impedes optimization of the thermal and mechanical properties of the thermal sprayed coatings. The microspheres (yttria-stabilized zirconia YSZ and lanthanum zirconate LZO) were prepared via the electro-spraying assisted phase inversion method (ESP). The thermal properties of the two ESP microspheres and a commercial hollow spherical powder (HOSP) were investigated by using theoretical, experimental, and simulation methods. Thermal conductivity of the single microsphere was estimated via a novel nest model that was derived from the Maxwell-Eucken 1 and the EMT model. Thermal conductivity of a single YSZ/LZO-ESP microsphere prepared at 1100–1200 °C was within 0.36–0.75 W/m K, which was ~ 20 % lower than that of a single YSZ-HOSP microsphere with a similar porosity. Heat flux simulation showed that high tortuosity around the multi-scaled voids of the ESP microsphere led to a more efficient decrease in thermal conductivity compared with total porosity.  相似文献   
4.
Oxygen evolution reaction (OER) is a key process involved in many energy-related conversion systems. An ideal OER electrocatalyst should possess rich active sites and optimal binding strength with oxygen-containing intermediates. Although numerous endeavors have been devoted to the modification and optimization of transition-metal-based OER electrocatalysts, they are still operated with sluggish kinetics. Herein, an ion-exchange approach is proposed to realize the structure engineering of amorphous P–CoS hollow nanomaterials by utilizing the ZIF-67 nanocubes as the precursors. The precise structure control of the amorphous hollow nanostructure contributes to the large exposure of surface active sites. Moreover, the introduction of phosphorus greatly modifies the electronic structure of CoS2, which is thus favorable for optimizing the binding energies of oxygenated species. Furthermore, the incorporation of phosphorus may also induce the formation of surface defects to regulate the local electronic structure and surface environment. As a result of this, such P–CoS hollow nanocatalysts display remarkable electrocatalytic activity and durability towards OER, which require an overpotential of 283 mV to afford a current density of 10 mA cm?2, outperforming commercial RuO2 catalyst.  相似文献   
5.
6.
Naringin (NAR), a major flavanone (FVA) glycoside, is a component of food mainly obtained from grapefruit. We used NAR as a food additive to improve the solubility and permeability of hydrophobic polyphenols used as supplements in the food industry. The spray-dried particles (SDPs) of NAR alone show an amorphous state with a glass transition temperature (Tg) at 93.2 °C. SDPs of hydrophobic polyphenols, such as flavone (FVO), quercetin (QCT), naringenin (NRG), and resveratrol (RVT) were prepared by adding varying amounts of NAR. All SDPs of hydrophobic polyphenols with added NAR were in an amorphous state with a single Tg, but SDPs of hydrophobic polyphenols without added NAR showed diffraction peaks derived from each crystal. The SDPs with NAR could keep an amorphous state after storage at a high humidity condition for one month, except for SDPs of RVT/NAR. SDPs with NAR enhanced the solubility of hydrophobic polyphenols, especially NRG solubility, which was enhanced more than 9 times compared to NRG crystal. The enhanced solubility resulted in the increased membrane permeability of NRG. The antioxidant effect of the hydrophobic NRG was also enhanced by the synergetic effect of NAR. The findings demonstrated that NAR could be used as a food additive to enhance the solubility and membrane permeability of hydrophobic polyphenols.  相似文献   
7.
In this work, a new type of FeSi/FeNi soft magnetic powder core (SMPC) was successfully fabricated by coating FeNi nanoparticles on the surface of FeSi micrometer powder. The effects of different contents of FeNi nanoparticles on the micromorphology, internal structures, and soft magnetic properties of SMPCs were studied. The results show that FeNi nanoparticles adhere to the surface of FeSi powder, which can effectively fill the air gap between FeSi powder and is beneficial to the compaction of the powder cores during the pressing process. Thus, the density of the SMPCs is increased. Compared to FeSi SMPCs, the comprehensive soft magnetic properties of FeSi/FeNi SMPCs have been greatly improved. When adding 15 wt% FeNi nanoparticles, the SMPCs exhibit excellent magnetic properties with high effective permeability (increased by 43.8 %) and low core loss (decreased by 22.1 %). The high performance FeSi/FeNi SMPCs prepared in this work are expected to be widely used in power choke coils, uninterruptible power supplies, and boosts and inverter inductors.  相似文献   
8.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
9.
《Ceramics International》2021,47(21):30147-30155
Yttrium aluminum garnet (Y3Al5O12, YAG) is an important functional material. However, the strict and complicated preparation has limited its wide application. This study aimed to rapidly synthesize Y3Al5O12 by plasma electrolysis for the first time. The prepared powder was studied from topography, structure and elements by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The powder had a good crystal form with a spherical shape. The single kind of diffraction peak of Y3Al5O12 in XRD revealed the high purity of the synthesized powders. The study of the relationship between the applied voltage and the synthesized powder revealed a threshold voltage of 210 V under the present condition. The higher voltage led to the damage of the electrode due to excessive heat. The synthesis of the YAG powder had a melt-quench process. The two processes were carried out at the same time.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号